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SUMMARY

We describe an extension tomatched case-control studies of the parametric modelling framework de-
veloped by Diggle (1990) and Diggle and Rowlingson (1994) to investigate raised risk around putative
sources of environmental pollution. We use a conditional likelihood approach for the family of risk func-
tions considered in Diggle and Rowlingson (1994). We show that the likelihood surface that results from
these models may be highly irregular, and provide a Bayesian analysis in which we investigate the pos-
terior distribution using Markov chain Monte Carlo. An analysis of one-one matched data that were
collected to investigate the relationship between respiratory disease and distance to roads in East London
is presented.

Keywords: Bayes factors; Environmental epidemiology; Point process modelling; Point sources of risk; Matched
case-control studies.

1. INTRODUCTION

This paper considers the analysis of individually matched case-control data in spatial epidemiology.
The case-control study has a long and controversial history in epidemiology (Breslow, 1996) and is the
subject of a number of book-length accounts (Breslow and Day, 1980; Schlesselman, 1982). Case-control
data alone cannot generally be used to estimate probabilities of disease given exposure but, through the
use of logistic regression models, can be used to estimate odds ratios of interest (e.g. Cornfield, 1951;
Anderson, 1972; Prentice and Pyke, 1979).

One requirement for a case-control study is that the selection of cases and controls is independent of
exposure status. In the most straightforward design, cases and controls are identified and their exposure
status, along with the values of relevant confounder variables (e.g. age and sex), are determined, and
the subsequent analysis adjusts for their effects by including them in the logistic regression model as
additional terms in the linear predictor or by carrying out a stratified Mantel–Haenszel analysis. The
design is potentially inefficient, since controls are effectively wasted if they fall within confounder-defined
strata that contain few cases. Matched case-control designs seek to avoid this inefficiency by keeping the
ratio of cases to controls constant within each sub-group defined by the values of relevant confounders, so-
called matching variables.Frequency matching corresponds to maintaining constant ratios across broad
strata, whilstindividual matching selects a set of matched controls for each case. When such a design
is followed it is vital to acknowledge the sampling scheme by introducing a parameter for each of the
matching variables. In the case of individual matching, inference must proceed via conditional likelihood
(e.g. Breslow and Day, 1980). In this approach the likelihood results from conditioning on the observed
set of exposures within each matched set, without knowledge of which exposure is associated with each
of the cases and controls.

c© Oxford University Press (2000)
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Investigation of raised relative risk around putative point or line sources has been the subject of much
recent attention, motivated in part by a greater public awareness of the possible effect of environmental
factors on health. Area-level data, consisting of disease counts and associated covariate information ag-
gregated over a set of geographic regions, are often routinely available from census information. Methods
for the investigation of disease risk in relation to point or line sources of environmental pollution have
been proposed by Stone (1988), Bithell and Stone (1989) and Diggle et al. (1997). These methods are
susceptible to ecological bias: area-level relationships provide an accurate reflection of individual-level
relationships only under strict conditions which depend upon both the underlying mathematical risk model
and assumptions concerning confounder variables (Piantadosi et al., 1988; Greenland and Morgenstern,
1989; Richardson, 1992).

Individual-level studies avoid the problem of ecological bias provided that exposure status is also mea-
sured at the individual level and not, for example, determined from the area in which an individual re-
sides. Associated statistical methods have been proposed by Diggle (1990), Lawson (1993) and Diggle
and Rowlingson (1994). Wakefield and Elliott (1999) discuss the statistical framework, and associated is-
sues of interpretation, for both individual and area-level studies. Biggeri et al. (1996) describe a matched
study investigating the relationship between air pollution and lung cancer in Italy. They used the point
process framework of Diggle and Rowlingson (1994) but did not account for the matching, thus producing
an inappropriate analysis. Dolk et al. (1998) used similar models in an investigation into increased risk
of birth defects near landfill sites.

Our focus in this paper is on the analysis of individually matched data when the exposure of primary
interest is defined by the spatial location of each individual relative to a point or line source of pollution.
In Section 2 we review the point process framework of Diggle and Rowlingson (1994) and describe its
extension to matched data. In Section 3 we describe our implementation of the matched case. Section 4
provides a Bayesian approach to this problem and in Section 5 we illustrate our methods via an investi-
gation into the relationship between respiratory illness and distance to roads in East London. Section 6
contains a concluding discussion.

2. MODEL FORMULATION

2.1. The basic model

Suppose that the locations of individuals in the population at risk form an inhomogeneous Poisson
process with intensity function g(x), that the probability that an individual at location x becomes a case
is p∗(x) and that individuals do or do not become cases independently of each other. It follows that
the point processes of cases and non-cases are independent Poisson processes with respective intensity
functions p∗(x)g(x) and {1 − p∗(x)}g(x). To allow the estimation of relevant summary parameters we
must model the spatially varying odds of disease, given by r∗(x) = p∗(x)/{1 − p∗(x)}. If we now
take independent random samples of cases (ideally a complete census) and of non-cases (controls), the
point process of sampled individuals again form independent Poisson processes but now with respective
intensity functions ap∗(x)g(x) and b{1 − p∗(x)}g(x), where a and b are the proportions of cases and
non-cases that are sampled. The probability that a sampled individual at location x is a case is given by

p(x) = [ap∗(x)g(x)]/[ap∗(x)g(x) + b{1 − p∗(x)}g(x)]

= ap∗(x)/[ap∗(x) + b{1 − p∗(x)}] = (a/b)r(x)

1 + (a/b)r(x)

and the odds of disease amongst sampled individuals are

r(x) = p(x)/{1 − p(x)} = (a/b)r∗(x). (1)
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Hence, logistic regression modelling of the sampled data, coding cases and controls as 1 and 0, respec-
tively, allows estimation of the true disease odds, r∗(x), up to a generally unknown constant of proportion-
ality. In deriving the key equation (1), we choose to introduce the underlying Poisson process formulation
for clarity of exposition and the form of this equation makes it clear that the odds scale is that which
allows both case-control and cohort data to be analysed within the same framework. More generally, the
validity of (1) rests on the weaker assumption that individual case and non-case outcomes are mutually
independent (this may be shown directly following the Bayes theorem argument of Breslow and Day,
1980, p. 205). This would not apply, for example, to a study of the spatial distribution of an infectious
disease. However, in general, it does seem appropriate for investigating the spatial distribution of chronic
diseases suspected to be of environmental origin.

Specific models follow from (1) by the imposition of a parametric form for the odds function r(x),
leading in turn to a regression function p(x) = r(x)/{1 + r(x)}. For a general discussion, see Thomas
(1981).

Suppose now that we have a putative point source at location x0. Interest is on how the risk surface
changes in relation to x0. The obvious way to proceed would be to use a log-linear model for the odds of
disease, r(x) = exp(α + βd) where d = ||x − x0||, leading in turn to a linear logistic regression model
for the binary case-control indicators. The equivalent log-linear model as applied to area-level data was
utilized by Cook-Mozaffari et al. (1989). A possible disadvantage of this model is that as d → ∞, for
β < 0 we have p∗(x) → 0, and not background risk as required. This led Diggle (1990) and Diggle and
Rowlingson (1994) to consider a non-linear logistic regression model with

r(x) = ρ f (x)

in which ρ is a nuisance parameter that is given by (a/b)ρ∗ where ρ∗ is the background odds of disease,
and f (x) is chosen so that as d → ∞, f (x) → 1 and p(x) → ρ/(1 + ρ), the background risk. In
particular, Diggle (1990) used (a reparameterized version of)

f (x) = 1 + α exp{−(d/β)2}. (2)

One appealing feature of (2) is that the parameters have a natural interpretation; α is the proportional
increase in disease odds at the source whilst β measures the rate of decay with increasing distance from
the source, in units of distance. A superficially simpler way to deal with non-zero background risk would
be to use a non-linear transformation of distance in the log-linear model for r(x), for example r(x) =
exp{α+β/(c+d)}, where the positive constant c is introduced to prevent the converse problem of infinite
r(x) at the source. However, unless c is known, the resulting model is intrinsically non-linear and conveys
no particular benefit over (2). We note that there are a number of models for atmospheric dispersion
(e.g. Fisher, 1979 and Panofsky and Dutton, 1984). These generally contain a large number of parameters,
however, and the sparsity of data will often prevent their use. We also note that if modelled or monitored
air pollution measurements are available, then an obvious approach is to use these measurements within a
log-linear model. Since the extremes of the measurements are finite, no problems occur at the endpoints.

Diggle et al. (1997) extended the Diggle (1990) model to allow for a plateau of constant elevated risk
up to an unknown distance δ from the point source. This mimics the common epidemiological practice
of classifying individual locations simply as ‘close’ or ‘not close’ to the putative source. Lawson (1993)
introduced angular terms to model directional variation in r(x). The extension to line sources follows
immediately from the above if we assume that exposure is well approximated by, say, perpendicular
distance to nearest road (though contributions from all ‘close’ roads could be considered).

Diggle and Rowlingson (1994) assume multiplicative risk factors for the combined effects of s sources,
at locations x0l , l = 1, . . . , s, and allow for covariate adjustment of the odds via additional log-linear
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92 PETER J. DIGGLE ET AL.

terms. The resulting model for the odds at location x , in the presence of s sources and q spatially refer-
enced covariates zk(x), k = 1, . . . , q , takes the form

r(x) = ρ exp

{
q∑

k=1

φk zk(x)

}
s∏

l=1

fl(x). (3)

For data consisting of n cases at locations x j , j = 1, . . . , n, and m controls at locations x j , j =
n + 1, . . . , n + m, in an unmatched case-control study, and writing p(x) = r(x)/{1 + r(x)}, the log-
likelihood is of the form

∑n
j=1 log p(x j ) + ∑n+m

j=n+1 log{1 − p(x j )}.

2.2. The extension to individually matched data

Suppose initially that we observe J matched case-control pairs in a study region A. We denote the
case locations by x j0, j = 1, . . . , J , and the corresponding control locations by x j1, j = 1, . . . , J . The
underlying model for a single point source is now that the probability of disease for an individual at
location x in stratum j is

p j (x) = r j (x)

1 + r j (x)
= ρ j f (x)

1 + ρ j f (x)
.

The effect of location is therefore assumed to act proportionally, with the baseline odds ρ j varying be-
tween matched pairs. This assumption is common in epidemiology (e.g. Breslow and Day, 1980) and is
consistent both with our aim for a simple description and with the conventional use of log-linear adjust-
ments for unmatched covariates, as in (3). We now proceed to derive the conditional likelihood; to do
this we must condition on the set of ‘exposures’, i.e. locations, within each matched pair. Hence, condi-
tional on there being a matched case-control pair at locations x j0 and x j1, and writing f j i for f (x ji ), the
conditional probability that the case is at x j0 is

p j0 = ρ j f j0/[(1 + ρ j f j0)(1 + ρ j f j1)]

ρ j f j0/[(1 + ρ j f j0)(1 + ρ j f j1)] + ρ j f j1/[(1 + ρ j f j1)(1 + ρ j f j0)]
= f j0

f j0 + f j1
. (4)

For data with m > 1 controls per case, given that the m + 1 members of the j th matched case-control
set are at locations x ji , i = 0, 1, . . . , m, the conditional probability that the j th case is at location x j0
is p j0 = f (x j0; θ)/

∑m
i=0 f (x ji ; θ). As in the unmatched case, we can extend the expression for p j0 to

include log-linear adjustments for unmatched individual-level covariates to give

p j0 = f (x j0; θ) exp{∑q
k=1 zk(x j0)φk}∑m

i=0 f (x ji ; θ) exp{∑q
k=1 zk(x ji )φk}

, (5)

where zk(x ji ) is the value of the kth covariate (k = 1, . . . , q) associated with the event at x ji and
φ = (φ1, . . . , φq)T is the corresponding vector of regression coefficients. In (5), we distinguish be-
tween covariate parameters φ and additional parameters θ which define the model for spatial variation in
disease relative to the point source and, in the present context, are the quantities of primary interest.

Now, for data consisting of J cases at locations x j0 and m matched controls per case at locations
x ji , i = 1, . . . , m, the conditional log-likelihood is of the form

L(θ, φ) =
J∑

j=1

log p j0. (6)
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Point-source modelling using matched case-control data 93

3. LIKELIHOOD APPROACH

A basic issue for inference from case-control data is whether inference should be based on a conditional
or an unconditional likelihood. The conventional wisdom (e.g. Clayton and Hills, 1993) is that if the
number of strata is small in comparison with the number of cases, then the unconditional likelihood may
be used, although from a classical perspective (e.g. Cox and Hinckley, 1974) the conditional likelihood is
the ‘correct’ approach. In other cases, including individually matched studies, the conditional likelihood
should be used, because in this case the number of nuisance parameters ρ j , eliminated by the conditioning,
tends to infinity with the number of matched sets. We shall use the conditional log-likelihood (6).

We consider the matched pairs case for presentational simplicity. All of the following applies equally
to studies with m > 1 controls per case, or with variable numbers of controls per case.

Maximum likelihood estimates (MLEs) θ̂ and φ̂ can be found using a general numerical optimization
routine. The null log-likelihood, denoted L0(φ), is obtained by setting f (·) = 1 in (5) whereupon (6)
becomes

L0(φ) = −
J∑

j=1

log

[
1 + exp

{
q∑

k=1

(zk(x j1) − zk(x j0))φk

}]
. (7)

This corresponds to the unconditional log-likelihood for a logistic regression model without an intercept,
where the sampling unit is the matched pair and the regression variables are the differences in the case and
control covariates (Breslow and Day, 1980, p. 251). Thus, any routine for fitting generalized linear models
can be used to estimate the null values of the covariate parameters. This can also be useful in suggesting
appropriate starting values for the parameters φ when maximizing the full conditional log-likelihood. The
expression (7) also shows, as is well known, that matched covariates cannot be included in the model for
the conditional likelihood. A variable used loosely in matching, say ±10 years of age, can be included
although the size of the coefficient is not interpretable as a main effect.

In testing a null model with p0 parameters against an alternative with p0 + p1 parameters, the general-
ized likelihood ratio statistic, D = 2{L(θ̂ , φ̂)− L0(φ̂0)}, has an asymptotic chi-squared distribution on p1
degrees of freedom under the null hypothesis, provided that the usual regularity conditions are satisfied
(Breslow and Day, 1980, p. 253). Under the same regularity conditions, approximate confidence regions
for model parameters can be derived from the estimated Hessian matrix and the asymptotic multivariate
normality of θ̂ .

For the application to respiratory disease in East London, we shall use model (2). Unfortunately, this
model has an irregularity at the null hypothesis of interest, since f (x) = 1 corresponds to α = 0 with β

indeterminate. Away from the null, our experience with this model has been that for the sample sizes we
are considering in the current application, the log-likelihood for the parameters of interest, θ = (α, β), is
far from quadratic even when we reparameterize θ to the real line using logs. Standard likelihood-based
asymptotics are therefore unreliable.

There is a large body of work on likelihood inference for non-regular problems (e.g. Self and Liang,
1987). Improved asymptotic approximations have been derived for a range of models but it is not clear at
what sample size these results are appropriate in our context and so instead we choose to use simulation.

To test the null hypothesis that f (x) = 1 we use a Monte Carlo test, simulating data under the null and
ranking the observed value of the likelihood ratio statistic D amongst the simulated values; if the observed
value of D ranks kth largest amongst N − 1 simulated values, the p value of the test is k/N (Barnard,
1963). In the simple case where there are no covariates, the null hypothesis translates to p j0 = 0.5 for all
j , i.e. a simple null hypothesis, and the Monte Carlo test is exact.

When there are unmatched covariates associated with each individual, the probabilities p j0 are no
longer constant under the null hypothesis but depend on the unknown quantities φ, i.e. the null hypothesis
is composite, and an exact Monte Carlo test is not available. For an approximate test in this situation,
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94 PETER J. DIGGLE ET AL.

we estimate the vector of covariate parameters under the null model, and proceed as follows. Let φ̂0 =
(φ̂10, . . . , φ̂q0) denote the vector of estimated values of the parameters under the null model, and write

p̃ j0 =
[

1 + exp

{
q∑

k=1

(zk(x j1) − zk(x j0k))φ̂k0

}]−1

.

We then construct a simulated data set under the null by randomly selecting, for each pair, the location
of the simulated case. The original case is chosen with probability p̃ j0 and the original control with
probability 1 − p̃ j0. When the likelihood terms (5) are evaluated, the covariates are those associated with
the simulated case and control. In summary, the x and z values are tied together in the simulation. For the
test, we again compare the observed value of D with a sample of values obtained from N − 1 data sets
simulated in this way.

One way to construct a confidence region for θ is to use a profile log-likelihood. For each value of θ

we maximize the log-likelihood with respect to φ, to give estimates φ̂θ , and define the confidence region
for θ as the set of all values such that 2{L(θ̂ , φ̂) − L(θ, φ̂θ )} < c. The conventional choice for c would be
the appropriate critical value from the chi-squared distribution on two degrees of freedom. However, as
the asymptotic justification for this choice is questionable, we also consider an alternative, Monte Carlo
approach. We simulate data sets from the fitted model with parameter values (θ̂ , φ̂) in (5). If we call these
simulation probabilities p̃ j0, then we select a location from each pair (x j0, x j1) to be the case location
with respective probabilities p̃ j0 and 1 − p̃ j0. For each simulated data set, we re-estimate the model
parameters (θ, φ) and use the resulting empirical distributions of parameter estimates as approximations
to the corresponding true sampling distributions. In particular, we use quantiles of the empirical sampling
distribution to define an interval estimate for any quantity of interest. Note that these interval estimates are
not, strictly, confidence intervals, but they do provide sensible reference intervals to indicate the precision
with which quantities of interest are estimated.

4. BAYESIAN APPROACH

A Bayesian approach provides an alternative to the likelihood-based inference of the previous section.
Wakefield and Morris (1998) describe how a Bayesian area-level analysis for the models suggested by
Diggle et al. (1997) may be implemented.

From a likelihood perspective the conditional approach is followed because of the poor properties of
MLEs when there is a large number of nuisance parameters (relative to the number of data points). From
a strictly Bayesian point of view, the ‘correct’ approach would be to use the unconditional likelihood and
integrate out the nuisance parameters ρ = (ρ1, . . . , ρJ )T . However, the difficulties encountered by an
(unconditional) likelihood approach would suggest that great care must be taken when specifying a prior
distribution for ρ. In an early paper, Altham (1969) derived Fisher’s exact test (which is based on the
conditional likelihood) for the 2 × 2 table case, from a Bayesian perspective by placing a Dirichlet prior
on the cell probabilities and then integrating out the nuisance parameters. Finding a prior distribution and
obtaining the conditional likelihood as the resultant marginal distribution in the general case has remained
elusive.

In practice, we would have considerable difficulty specifying a meaningful prior for ρ. We note that
the choice of an exchangeable prior for the elements of ρ is not sensible since epidemiological knowledge
will in most cases give, at the least, a ranking on the ρ j (for example, j may index age). We therefore
proceed with the conditional likelihood as our starting point. A key question to ask therefore, is to what
extent conditioning to eliminate the nuisance parameters ρ also sacrifices information about the parame-
ters of interest θ . Essentially we are acting ‘as if ’ the likelihood factors into two parts and we are then
concentrating on that part containing θ (the conditional likelihood). We note that the use of the conditional
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Fig. 1. Posterior 2.5%, 25%, 50%, 75% and 97.5% quantiles of α and β for different priors on α, indexed by αmax.
The solid diagonal line on (a) marks y = x . Prior for β uses βmax = 230 in all cases.

likelihood is consistent with independent priors for ρ and (θ, φ). This approach is consistent with other
authors who have used a conditional likelihood in related contexts (e.g, Liao, 1999), and also the use of
the partial likelihood rather than the full likelihood in survival analysis (Raftery et al. 1996).

We consider the following specification for the prior distributions of (θ, φ ) in model (6) in conjunction
with distance model (2). For the parameters of interest θ = (α, β), we specify a uniform prior so as to
focus on the likelihood.

Prior for φ. We use independent priors for the covariate coefficients, φ ∼ N(Mφ, Vφ). The mean param-
eter Mφ and diagonal variance–covariance matrix Vφ may be chosen on substantive grounds or, as
in Section 5, a large value of Vφ can be used to provide an effectively flat prior for φ.

Prior for α. We use a uniform prior over the range (−1, αmax), the upper limit representing a plausible
upper bound to the increase in odds at source relative to the background odds.

Prior for β. We use a uniform prior over the range (0, βmax). The value of βmax was chosen to reflect the
range of distances over which emissions are likely to act.

Figure 1 shows 20 simulations from the prior for θ = (α, β), summarized through the function f (d, θ),
with αmax = 60 and βmax = 0.2×dmax (a) and βmax = 0.5×dmax (b). These values were chosen to allow
a reasonable range for the function f (·).

In this context, because the simple risk/distance model we consider is not linked to any specific bio-
logical mechanism, we would not want to restrict ourselves to a single prior distribution. Let

p(θ, φ|y) ∝ l(θ, φ) × π(θ, φ)

denote the unnormalized posterior, where l and π denote the (conditional) likelihood and prior, respec-
tively. In general, an analytic approximation, for example the Laplace method (e.g. Tierney and Kadane,
1986), or a simulation-based approach may be used when the posterior distribution is, as here, not ana-
lytically tractable. We follow the latter course and use Markov chain Monte Carlo (MCMC), e.g. Smith
and Roberts (1993) and Gilks et al. (1996). We do not go into the details of this approach but note that
the Metropolis–Hastings algorithm (Smith and Roberts, 1993), implemented component-wise, may be
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96 PETER J. DIGGLE ET AL.

used via the BUGS software (Spiegelhalter et al., 1996). Given (dependent) samples from the Markov
chain the posterior distribution may be summarized either via its moments or, more appropriately for the
non-regular model considered here, via one- and two-dimensional marginal distributions.

As a Bayesian counterpart to a test of the null hypothesis that f (x) = 1, we consider Bayes factors
(Kass and Raftery, 1995) which are defined as the ratio of posterior to prior odds. Specifically, the Bayes
factor for comparing models M0 (the null model) and M1 (model(2)) is given by

B10 =
∫

p(y|θ, φ, M1)π(θ, φ|M1)dθdφ∫
p(y|φ, M0)π(φ|M0)dφ

= p(y|M1)

p(y|M0)
. (8)

Kass and Raftery (1995) suggest calculating 2 loge(B10) as a Bayesian analogue of a log-likelihood ratio
statistic or deviance. Values greater than 2 indicate increasing evidence against M0: between 2 and 6 is
‘positive’ evidence, 6 to 10 is ‘strong’ and over 10 is ‘very strong’ evidence against M0.

The calculation of the numerator and denominator of (8) is not straightforward using MCMC and
a number of alternatives have been proposed (DiCiccio et al., 1997). For this low-dimensional prob-
lem we use the importance sampling estimator 1

T

∑T
t=1 l(θ t , φt )π(θ t , φt )/g(θ t , φt ), where (θ t , φt ), t =

1, . . . , T , are sampled from the proposal distribution g(θ, φ). For the proposal density g(·) we have used
the prior for θ and standard normal densities (scaled to provide an efficient algorithm) for the covariate
parameters φ.

5. APPLICATION: RESPIRATORY DISEASE IN TOWER HAMLETS

We illustrate the methods described in Sections 2–4 on two sets of data described more fully in Morris
et al. (2000). The aim of the study was to examine the relationship between proximity of residence to main
roads and increased risk of respiratory disease. The first data set consists of 125 asthma cases, and the
second 124 chronic obstructive airways disease (COAD) cases. Cases were clear-cut diagnoses attending
the casualty department at the Royal London Hospitals in the years 1991–1992. Controls were selected
from non-chest related admissions. Each case was individually matched to a single control using sex, race
and consultant team. Controls were also matched, where possible, on age to within ±5 years. When this
was not possible, age ranges were relaxed incrementally until a control matching on the other variables
was found. Approximately 80% of the pairs are matched to within ±5 years. Since the matching on age
is not exact we include it as a covariate in the model.

A small-area measure of deprivation, the so-called Carstairs’ index (Carstairs and Morris, 1991), was
used to account for socio-economic status. The index is derived from four census variables concerning
unemployment, overcrowding, car-ownership and social class. The index has been shown to be a powerful
predictor of health outcomes (e.g. Jolley et al., 1992) and is scaled to have zero mean over England and
Wales with larger values indicating increased deprivation. For the asthma study, the empirical quartiles of
the Carstairs index were 4.4, 6.5 and 10.8, illustrating that the study area is relatively deprived. Each indi-
vidual’s address was linked to the corresponding census enumeration district (ED), using the Geographical
Information System (GIS) Arc-Info, in order to determine a deprivation score. Bartholomew’s road map
data and the GIS were used to calculate the shortest perpendicular distance between the residence of each
event and the nearest motorway, primary road, A-road or B-road.

In the following sub-sections, we report those parts of our analysis that are based on the distance-odds
model (2). We also investigated more general models, including the plateau model of Diggle et al. (1997)
and a generalized linear model with reciprocal distance in the linear predictor, but omit the details as in
neither case did the other models provide a demonstrably better fit to the data than did model (2). As a
first exploratory step we used a generalized additive model (GAM, Hastie and Tibshirani, 1990) within
a conditional likelihood framework. Figure 2 illustrates the spline fit to the distance-odds relationship
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Fig. 2. Fitted B-splines, s(d), for (a) asthma and (b) COAD data. Dashed curves denote approximate 95% confidence
intervals.

for asthma (a) and for COAD (b). We see that there appears to be a monotonic relationship for COAD,
with risk increasing with proximity to roads, but for asthma the relationship seems to be in the opposite
direction. The logistic model used to construct this plot (and those in the following two sections) makes
adjustment for age and deprivation (through the Carstairs index). The GAM model provides a useful
initial look at the data, but formal inference concerning the relationship between distance and disease
odds is not so straightforward.

5.1. Asthma data

We first use the observed distances of the asthma data to investigate the chi-squared approximation to
the null sampling distribution of D in the test of the hypothesis that f (x) = 1 within model (2). The
estimated true significance levels of nominal 10%, 5% and 1% tests, based on 1000 simulations, were
11.3%, 4.8% and 1.1%, respectively. Thus for these data, notwithstanding the theoretical irregularity, the
standard asymptotic approximation appears to be adequate. We use the chi-squared approximation in all
subsequent tests against the null.

Figure 3 shows the relationship between disease status and age, deprivation index and distance to
nearest main road. The case-control labels are plotted as vertical ticks and have been ‘jittered’ in the
x-axis, where necessary, to break ties. The solid lines are loess smoothers (Cleveland, 1979), using a
span of 2/3. Figure 3(a) shows that there appears to be no remaining relationship between disease and
age. Figure 3(b) indicates that, if anything, the probability of asthma is greater in less deprived EDs but
Figure 3(d) shows very little relationship between distance and deprivation.

The plot of disease status against distance (Figure 3(c)) suggests a relationship between distance and
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Fig. 3. Plots (a), (b) and (c), respectively, show relationships between asthma status (Yi = 1 denotes asthma case) and
age, deprivation and distance. Plot (d) shows the relationship between deprivation and distance. Solid curves denote
loess smoothers.

asthma in the opposite direction to that hypothesized (in line with Figure 2). However, there is no evidence
that model (2) fits better than the null model ( D = 3.44, df = 2, p = 0.18). Note that the null model in
this case includes log-linear terms for age and deprivation.

Turning to the Bayesian analysis, we used the priors described in Section 4 with αmax = 60 and βmax =
230 (the maximum distance here is 459.6 m). This prior is displayed in the lower panel in Figure 1. For
both data examples we used essentially flat priors for the two covariate parameters φ, namely independent
normal with zero mean and variance 106. We obtained samples from the posterior using MCMC, ran the
chain with a 500 iteration ‘burn in’, and judged convergence by visual examination of the chains for each
of the parameters. Posterior quantiles (2.5%, 50%, 97.5%) for the parameters were based on a further
9500 iterations and were (−0.806, −0.122, 55.6) for α and (0.335, 47.34, 217.7) for β. The posterior
distributions for α and β are highly skewed. Furthermore, the upper quantile in each case indicates that
the likelihood has a heavy tail, and consequently the upper limit of the prior is very influential. The Bayes
factor comparing model (2) against the null model is −5.67 indicating positive evidence in favour of the
null model.

In summary, for these data we detect no association between asthma and distance of residence to main
roads. However, we make the obvious point that proximity to main roads may be a very poor measure
of personal exposure to traffic-related pollution. For example, no account is taken of individual daily
changes in location.
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Fig. 4. Plots (a), (b) and (c), respectively, show relationships between COAD status (Yi = 1 denotes COAD case) and
age, deprivation and distance. Plot (d) shows the relationship between deprivation and distance. Solid curves denote
loess smoothers.

Table 1. MLEs and approximate 95% confidence intervals for model (2), COAD data

Parameter α β φage φdep

MLE 4.634 24.664 0.012 0.028

Hessian-based 0.261 24.171 12.753 47.700 −0.050 0.075 −0.033 0.089

Profile-based 0.547 35.239 11.137 55.594 −0.050 0.079 −0.033 0.090

Simulation-based 1.033 71.087 11.107 123.75 −0.056 0.088 −0.035 0.097

5.2. COAD data

Figure 4 shows the relationships between disease status, age, deprivation and distance to nearest main
road. In particular, Figure 4(c) appears to indicate that a model such as (2), in which the log odds of risk
decrease with increasing distance, may be appropriate (again consistent with Figure 2). The null model, as
before, includes terms for age and deprivation. Fitting untransformed distance as an additional predictor
within the conditional logistic model gives no evidence that the distance term is a significant improvement
over the null model (D = 1.0802, df = 1, p = 0.299). In contrast, there is evidence that model (2) is a
better fit than the null model ( D = 7.472, df = 2, p = 0.0239).

The log-likelihood surface is highly non-quadratic in α and β. Consequently, Hessian-based estimates
of standard errors and confidence intervals are unreliable for these parameters, although they appear to
be adequate for the covariate regression parameters φ. Working with log α and log β gave a surface that
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Fig. 5. Inference for COAD data. (a) 95% profile likelihood confidence region for (α, β). Position of the MLE denoted
by �. (b) The corresponding interval of f (α, β). The dashed curve represents the interval, the solid curve the MLE
and the faint horizontal line represents f = 1. (c) Bivariate posterior sample, based on the prior α ∼ U (−1, 60),
β ∼ U (0, 230). (d) The corresponding 95% credible interval on f (α, β). The dashed curve represents the interval,
the solid line the median and the faint horizontal line represents f = 1.

was closer to quadratic. The resulting interval estimates, along with those from profile log-likelihoods
and those obtained by simulating 10 000 sets of data from the fitted model (via the likelihood procedure
outlined in Section 3) are given in Table 1. We note that the Hessian and profile approaches underestimate
the uncertainty for large values of α and β. Since α and β are likely to be highly correlated, we have
constructed a two-dimensional profile confidence region, shown in Figure 5(a). This plot clearly shows
the irregular behaviour of the likelihood. Figure 5(b) shows the corresponding interval for the estimated
function f (·) evaluated over a fine grid of points contained within the confidence region. Note that
computation of the likelihood simulation-based intervals can be both intricate and time consuming.

As we might expect from the likelihood analysis, a Bayesian analysis is highly sensitive to the choice
of prior. Figure 5(c) shows a sample of 1000 points from the bivariate posterior p(α, β|y), based on the
priors α ∼ U (−1, 60), β ∼ U (0, 230). The support of the posterior distribution follows quite closely
the shape of the profile likelihood confidence region. Given a sample from the posterior for (α, β), it is
straightforward to make inference for other properties of the model by plugging the sampled values of
(α, β) into the expression for any quantity of interest. Figure 5(d) gives quantiles of the posterior for
f (x, θ) = 1 + α exp{−(d/β)2} as a function of d, evaluated pointwise. Figure 6 shows the marginal
posterior distributions for α and β based on two different priors. The posterior for α in particular has a
very heavy tail. The posterior distributions under both priors are fairly similar. Figure 7 illustrates the
effect of the prior for α on the posterior quantiles of α and β. The posterior for β is relatively robust over
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Fig. 6. Histogram representations of marginal posterior distributions p(α|y) and p(β|y). Panels (a) and (b) corre-
spond to the prior α ∼ U (−1, 60), β ∼ U (0, 230) and (c) and (d) to the prior α ∼ U (−1, 60), β ∼ U (0, 92). The
x-axis of panel (b) has been truncated at 80 for comparison with (d), 3% of the points lay beyond the value 80.

Table 2. The quantity 2 loge(B10), as a
function of αmax and βmax where B10 de-
notes the Bayes factor in favour of model
(2) versus the null model. All estimates
based on sampling T = 106 points from the

proposal densities

βmax

αmax 10 30 70 150 230

10 0.39 4.94 4.02 2.59 1.48

30 0.66 4.17 2.84 1.47 0.76

60 0.82 3.30 1.85 0.56 −0.36
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Fig. 7. Curves of f (θ) resulting from 20 simulations from the priors for α and β. Both priors for α use αmax = 60.
Two different priors are used for β, namely βmax = 0.2 × dmax (a) and βmax = 0.5 × dmax (b).

a range of values of αmax, whereas that for α shows far greater sensitivity to this choice.
Table 2 shows, as expected, that the Bayes factor for comparing the null model with model (2) is

sensitive to the choice of prior. We note that for large values of αmax and βmax the Bayes factor favours
the null model. This is consistent with Lindley’s paradox (Lindley, 1957) since the Bayes factor averages
the likelihood over the prior and, under model (2), with large values of αmax and βmax, much of the prior
density is in areas in which the likelihood is close to zero. The sensitivity of Bayes factors to the prior
is well documented. As possible solutions to this problem, several authors have proposed adjusted Bayes
factors (e.g. O’Hagan, 1995; Berger and Pericchi, 1996) or ‘reference’ priors (Kass and Wasserman,
1995). Unfortunately, for the non-linear model considered here, these alternatives are not straightforward
to apply. In this case we prefer to base inference on estimation rather than testing which, as we have
seen, is more stable under different prior specifications. The sensitivity to the prior here indicates that
there is limited information in the data and a more comprehensive conclusion could only be reached with
additional data.

We conclude that for the COAD data there is reasonable evidence of elevated risk close to main roads,
but the functional form of the variation in risk with distance is estimated very imprecisely. The possibility
that this elevation in risk is due to residual confounding cannot, of course, be eliminated. The reader is
referred to Morris et al. (2000) for further discussion of the substantive conclusions, including references
to related studies.
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6. DISCUSSION

In this paper we have demonstrated how matched case-control data, collected to investigate how disease
risk varies in relation to a point or line putative source, may be modelled using a simple but reasonable
distance/risk model. We have considered both likelihood-based and Bayesian approaches to inference
for this problem. In the example, we demonstrated that for the particular model we use, the likelihood
function was highly irregular and care must be taken when summaries are reported.

We have seen that both the likelihood ratio test and the Bayes factor can be difficult to interpret for the
model considered here. Our preferred approach, which we have emphasized and which avoids this diffi-
culty, is simply to fit the model and examine interval estimates of quantities of interest. In the Bayesian
setting, this is a natural by-product of an MCMC implementation. In the likelihood-based setting it in-
volves a similar, albeit more ad hoc, device of Monte Carlo sampling from the fitted model to estimate the
sampling distribution of any quantity of interest.

In spatial epidemiological studies, the possibility of residual spatial variation always exists, perhaps
because of an infectious agent or spatially varying unmeasured risk factors. Our methods do not allow for
such a phenomenon, but one possible extension, in the spirit of Diggle et al. (1998), is to assume

logit p j (x) = log ρ j + log f (x; θ) +
q∑

k=1

zk(x)φk + S(x),

where the residual spatial variability term S(x) is modelled as a Gaussian random field. To implement
this model the conditional likelihood may again be considered, and a Bayesian approach via MCMC is
the obvious choice for inference.
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