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SUMMARY

There are a number of applied settings where a response is measured repeatedly over time, and the
impact of a stimulus at one time is distributed over several subsequent response measures. In the mo-
tivating application the stimulus is an air pollutant such as airborne particulate matter and the response
is mortality. However, several other variables (e.g. daily temperature) impact the response in a possibly
non-linear fashion. To quantify the effect of the stimulus in the presence of covariate data we combine two
established regression techniques: generalized additive models and distributed lag models. Generalized
additive models extend multiple linear regression by allowing for continuous covariates to be modeled as
smooth, but otherwise unspecified, functions. Distributed lag models aim to relate the outcome variable
to lagged values of a time-dependent predictor in a parsimonious fashion. The resultant, which we call
generalized additive distributed lag models, are seen to effectively quantify the so-called ‘mortality dis-
placement effect’ in environmental epidemiology, as illustrated through air pollution/mortality data from
Milan, Italy.

Keywords: Environmental epidemiology; Non-parametric regression; Smoothing; Time series.

1. INTRODUCTION

In the early 1900s a number of studies reported associations between air pollution and daily deaths
(Schwartz and Dockery, 1992; Schwartz, 1991; Fairley, 1990). Those findings led to a large number
of followup studies (Pope et al., 1995a). Most of these studies (Katsouyanni et al., 1997; Anderson et
al., 1997; Schwartz, 1994b; Schwartz and Dockery, 1992) examined the association with pollution on the
mean of several days. Presumably, the impact of a unit change in pollution appears with some latency, and
persists for some time after exposure. That is, the effect in an individual is distributed over time. While
most studies found multi-day averages of pollution are better predictors of daily death counts than a single
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day’s exposure, only one has systematically examined the shape of the distributed lag (Schwartz, 2000b).
One method of modeling such behavior is through a linear regression model with lags of the stimulus as
covariates. But since the number of lags can be relatively high, and the exposure is serially correlated,
ordinary linear regression is susceptible to collinearity-related problems. A remedy is the distributed
lag model (DLM) first proposed by Almon (1965) which restricts the coefficients to being a low-degree
polynomial in the lags. Recently, parametric distributed lag models have been used to determine the
association over time between air pollution and mortality (Pope and Schwartz, 1996; Schwartz, 2000b).
An extension of this idea, which aims for more flexibility than that afforded by polynomial functions, is
to subject the coefficients to non-parametric smoothing. This approach has been investigated, through the
use of spline functions, by Corradi (1977).

These papers have focused on DLMs examining the effect of air pollution exposure over a few days on
daily deaths. If one wishes to examine effects at substantially longer lags, a smoothing approach is even
more advantageous. We will motivate such an application below.

While polynomial and, in particular, spline-based DLMs are flexible enough to model the effect of the
stimulus of interest, it is usually advantageous to incorporate other covariate information. For example, in
air pollution studies weather and seasonality have confounding effects on mortality. To allow their entry
into a DLM in a flexible fashion we combine the model with the generalized additive model popularized by
Hastie and Tibshirani (1990). Generalized additive models were introduced into time series epidemiology
studies in 1993 (Schwartz, 1993, 1994a), and have since become the standard approach to this covariate
control problem (Schwartz, 1994b; Hoek et al., 1997; Kelsall et al., 1997; Bremner et al., 1999; Dominici
et al., 2000). Generalized additive models are an extension of generalized linear models that allow for
the modeling of nonlinear effects through the use of smoothing. We call the result a generalized additive
DLM.

The following section provides some background on the motivational application: the ‘mortality dis-
placement issue’ from environmental epidemiology. While the association between particulate matter
and mortality or morbidity is generally accepted, controversy remains about the importance of the as-
sociations. If it is due solely to the deaths of frail individuals, which are brought forward by only a
brief period of time, the public health implications of the associations are smaller. Recently some papers
have addressed this issue, using different approaches to investigate the ‘mortality displacement effect’ or
‘harvesting effect’ (Zeger et al., 1999; Schwartz, 2000a).

Zeger et al. (1999) used frequency domain log–linear regression and estimated a mortality–air-pollution
association that is resistant to short-term harvesting. Schwartz (2000a) used filtering in the time domain
to look at how the mortality–air-pollution association varies as the time scale of the exposure varies, us-
ing the STL algorithm (Cleveland et al., 1990) to decompose the time series. In addition Spix (Spix et
al., 1993, Spix, Daily time-series of mortality counts: estimating the harvesting effect. (submitted for
publication)) has addressed a related issue. If the pool of susceptible individuals varies due to other risk
factors, such as cold weather or influenza, the apparent risk due to pollution may change. She estimated
the size of the risk pool change using moving averages of mortality and examined an interaction with air
pollution.

This paper takes an alternative, and in some ways more direct, approach to estimating the effect of air
pollution on daily deaths net of any short-term rebounds due to mortality displacement, as well as any
longer-term lagged effect.

In Section 2 we describe the mortality displacement issue in more detail to motivate the model. In
Section 3.1 we describe the data and develop models geared towards quantification of the mortality dis-
placement. Analysis of air pollution data from Milan, Italy, and a new quantification of the mortality
displacement is given in Section 4.
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Fig. 1. The mechanics that lead to the mortality displacement.

2. MOTIVATION: THE ‘MORTALITY DISPLACEMENT’

As noted, a number of analyses have estimated the relative risk of mortality per a given change in air
pollution. The public health significance of short-term effects of air pollution varies depending on the
extent of time the deaths are being advanced.

This question interacts directly with the distributed lag mentioned above. In an individual, the risk of
air pollution exposure is presumably positive or zero at all lags. This need not be true in a population.
Assume that at any given time there is a pool of people at elevated risk of dying because of acute or
chronic conditions. Then an air pollution episode could increase the risk for those individuals, increasing
the death rate out of the pool, and decreasing the pool size. On subsequent days, the number of deaths
observed will be less than expected, inducing a negative association with air pollution at those lags. The
finite nature of the risk pool therefore creates the possibility of this negative association, with the result
that many of the early deaths may only be advanced by a short period. This is sometimes referred to as
mortality displacement and this pathway is illustrated in the right side of Figure 1, where air pollution
effects the rate of transition out of the risk pool to death. While previous approaches have sought to net
out these negative effects in the course of estimating the pollution impact (Zeger et al., 1999; Schwartz,
2000a), our approach seeks to directly estimate any negative association at longer lags.

In reality the relationship of air pollution to the risk pool is more complex. Zelikoff et al. (1999),
for example, have shown that exposure to airborne particles substantially exacerbates pneumonia in rats.
Similar results have been reported for influenza infections in mice (Clarke et al., 1997). Toxicological
data also suggest that effects of exposure may be seen over several subsequent days. For example, Clarke
et al. (1999) reported changes in tidal volume of rats immediately following exposure to concentrated
ambient air particles, and increases in inflammatory markers approximately 36 hours following exposure.
Gold and coworkers (Gold et al., 2000) have seen changes in electrocardiograms within hours of expo-
sure to airborne particles. However, the strongest associations of air pollution with defibrillator discharges
was with a two-day lag (Peters et al., 2000). Hence air pollution could shift the distribution of intensity
of many illnesses to the right, increasing the number of persons whose illness is now life threatening.
This may occur with multiple lags depending on the mechanism and the individual. Such impact is in-
dicated on the left side of Figure 1, where air pollution potentially increases the rate of transition into
the risk pool, or the rate of recovery out of it. Moreover, the effect of air pollution on increasing re-
cruitment into the risk pool may occur with different lags than the effect on increasing the transition to
death.

Figure 2 shows the type of lag structure that arises when there is harvesting. The horizontal axis is
the lag number and the vertical axis shows the coefficients β�. Each β� has the interpretation: effect of
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Fig. 2. Lag structure corresponding to the mortality displacement effect.

pollution level � days ago on mortality today. (This is made mathematically precise in the models given
in Section 3.3.)

A is the sum of the positive coefficients for low lags and represents the fact that pollution levels in
the past few days have a positive effect on mortality. This is what most previous studies have reported.
However, the negative coefficients in B mean that pollution levels a longer period ago have a negative
effect. This ‘rebound effect’ is due to the depletion of the risk pool, normally made up of elderly and sick
people who have had their death brought forward a few days or weeks by episodes of high pollution.

Most discussions of mortality displacement end by stating that A overestimates the public health sig-
nificance of pollution, since it is really A+ B (where B is negative) that represents deaths brought forward
by a noticeable amount of time. However, if the increased risk to individuals of an air pollution episode
die out slowly over time, or if there is increased recruitment into the risk pool due to air pollution, and
this occurs more slowly than the effects on mortality illustrated in period A, then we may also have a
period C , subsequent to the harvesting period B, where the regression coefficients are once more positive.
The cumulative effect is then A + B + C . To examine this possibility we need to allow flexibility for
a relatively long and nonlinear distributed lag. However, the total explanatory power of air pollution on
daily mortality is quite modest, making it likely that high degree polynomials will be estimated poorly.
The desire for parsimony in a flexible model is also a motivating factor for this paper.

3. DATA AND MODELS

3.1. Description of the data

Data from a study in Milan, Italy, are available to study the mortality displacement. These are daily
time series of mortality, meteorological variables, and air pollution. The Milan study was conducted in the
central urban area of the city for the ten-year period 1980–89. The mean population of the municipality
of Milan, during the study period, was 1.5 million inhabitants. The mortality data are daily counts derived
from death certificates and consist of residents of Milan who died in the city from natural causes (Interna-
tional Classification of Diseases, ICD, ninth revision: 1-799). The mean daily deaths in the 10 years is 32.
For this illustration we use total suspended particulate (TSP) as our pollution measure. Meteorological
data are expressed by mean temperature and relative humidity. Further details may be found in Vigotti et
al. (1996) and in Rossi et al. (1999).
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Table 1. Summary statistics of Milan mortality data

Average Max Min S.dev

Mean temperature 14 32 −6 8

Relative humidity (%) 62.0 99.7 0 17

TSP 14.2 529 4 81

Total mortality (ICD-9: 1-799) 32 66 10 7.7

TSP was measured by the β attenuation method and was available only in two stations and the mean
was recorded if both were present. The correlations between monitors was high (0.89–0.91). After the
daily mean was computed 19% of the values for TSP were missing.

Although these are the only data analysed in this paper, there are many types of data with similar
features that could benefit from the model and fitting procedure that we develop to analyze the Milan data.
The essential features are: a response, a stimulus whose effect on the response is distributed across several
time lags and measurements on possible confounders.

3.2. Imputation of missing data

In the time series of the air pollutant, missing values are present because the stations were not always
working during the 10 years. Some of our proposed models involve 45 lags of air pollution, so it is
important to impute the missing data. Since air pollution varies seasonally, and also with weather param-
eters, a generalized additive model was fit estimating air pollution as smooth functions of these variables.
Weather fronts usually persist for just a few days, and strongly influence pollution levels. This usually
induces autocorrelation in pollution values. The partial autocorrelation function of the deviance residuals
of our model showed a high value at lag 1. Therefore the one-day-lagged pollutant was introduced in the
model to correct for an autocorrelation of order one and improve model fit. The final model is:

air.pollutantt = θ air.pollutantt−1 + f1(min.tempt )+ f2(rel.humidt )+ f3(t)+errort

This model explained about 70% of the variability of the dependent variable. If more than one consec-
utive day’s pollution values were missing, the model fitting was iterated.

3.3. Smooth DLMs

Let (x1, y1), . . . , (xT , yT ) denote a data set that is ordered with respect to time. In the motivating
example, xt represents a daily pollution measure and yt represents a mortality count for the same day.
Additional covariates may be measured, but we ignore these for now for the purposes of developing our
approach. The unconstrained distributed lag model of order q is

yt = α + β0xt + β1xt−1 + · · · + βq xt−q + εt , t = q + 1, . . . , T (1)

where the εt are independent random variables with mean zero and constant variance (Almon, 1965). The
idea here is the outcome yt at time t may depend on xt measured not only on the current day, but also on
previous days. Note that the overall impact of a unit change in exposure over the next q days is given by∑q

�=0 β�.
Because of collinearity-related problems it is common to constrain the β� to be a simple function of

the lag number. This constraint can be generalized to the polynomial DLM of order (q, p) (PDLM(q, p))
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where the β� are constrained to be a pth degree polynomial function of �. It is straightforward to formulate
least squares procedures for fitting such a model: see, for example, Davidson and MacKinnon (1993, pp.
674–676).

The PDLM(q, p) imposes the restriction that β� be a polynomial function of �:

β� =
p∑

j=0

τ j�
j , � = 0, . . . , q. (2)

As with ordinary regression, polynomial models are not suitable for modeling more localized structure
(see, e.g. Hastie and Tibshirani, 1994). We propose to overcome this by extending (2) to

β� =
p∑

j=0

τ j�
j +

K∑
k=1

νk(� − κk)
p
+ (3)

where κ1, . . . , κK is a set of K distinct numbers between 0 and q. Note that β� is a piecewise pth degree
polynomial in �, with join points, or knots at the κk .

Equation (3) is commonly referred to as a regression spline function of �. However, estimation of the
coefficients via ordinary least squares will normally lead to a β� function that is too wiggly. This problem
can be overcome by restricting the size of the νk . This can be achieved through the addition of a penalty
term λ

∑K
k=1 ν2

k to the least squares criterion. This strategy has become known as penalized spline (or
P-spline) smoothing (e.g. Eilers and Marx, 1996).

The full prescription for estimation of the coefficients is:

minimize
T∑

t=q+1

(yt − α − β0xt − · · · − βq xt−q)2 + λ2
K∑

k=1

ν2
k , where β� is as given in (3).

The solution is easiest to express in matrix notation. Let X be the (T − q) × (q + 2) design matrix
corresponding to (1),

T =




1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0p (0 − κ1)

p
+ · · · (0 − κK )

p
+

0 1 1 · · · 1p (1 − κ1)
p
+ · · · (1 − κK )

p
+

...
...

...
. . .

...
...

. . .
...

0 1 q · · · q p (q − κ1)
p
+ · · · (q − κK )

p
+


 and D =

[
0(p+2)×(p+2) 0(p+2)×K

0K×(p+2) IK×K

]
.

If θθθ = [α, τ0, τ1, . . . , τp, ν1, . . . , νK ]T then our fitting criterion is

‖y − XTθθθ‖2 + λ2θθθTDθθθ

where ‖v‖ = √
vTv. The fitted βββ values are then

β̂ββλ = T(TTXTXT + λ2D)−1TTXTy, (4)

which we call the penalized spline distributed lag estimate of the β�.

3.4. Extension to generalized additive DLMs

In our main motivating data set we have

(xt , yt ) = (mortalityt ,TSPt ), t = 1, . . . , 3652
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i.e. daily mortality and level of TSP for the city of Milan, Italy, for 3652 consecutive days. While a DLM
as described by (1) and (4) might help describe the short-term effect of TSP levels on daily mortality, it
would be weakened by the fact that it does not account for confounding due to, for example, meteorolog-
ical variables such as temperature and relative humidity. Also, the fact that mortality is a count variable
means that a distribution suited to count data, such as the Poisson, is needed.

These considerations lead to what we call a generalized additive DLM. The general form of such a
model is

g{E(yt )} = α + γγγ Tzt +
d∑

j=1

f j (s jt ) +
q∑

�=0

β�xt−�, t = q + 1, . . . , T (5)

where g is a link function, zt is a vector of variables modeled linearly (these are often dummy variables),
s jt is the j th variable modeled as smooth function.

Estimation can be performed via maximum penalized likelihood, according to the distributional as-
sumption for yt . In this paper we concentrate on the case where yt is from a one-parameter exponential
family (e.g. Poisson, binomial, gamma). However, to account for over-dispersion this can be extended to
quasi-likelihood models (see, e.g., Hastie and Tibshirani, 1990).

The model can be fit directly using penalized splines for estimation of the f j . The starting point is the
following X -matrix:

X = [1|Xlinear|Xsmooth|Xlag]
where

Xlinear =



zT
q+1
...

zT
T


 , Xsmooth = [Xsmooth,1| · · · |Xsmooth,d ],

Xsmooth, j =



s j,q+1 · · · s p
j,q+1 (s j,q+1 − κ j1)

p
+ · · · (s j,q+1 − κ j K j )

p
+

...
. . .

...
...

. . .
...

s jT · · · s p
jT (s jT − κ j1)

p
+ · · · (s jT − κ j K j )

p
+




and

Xlag =



xq+1 xq · · · x1
...

...
. . .

...

xT xT −1 · · · xT −q


 U, U =




1 0 · · · 0p (0 − κ1)
p
+ · · · (0 − κK )

p
+

1 1 · · · 1p (1 − κ1)
p
+ · · · (1 − κK )

p
+

...
...

. . .
...

...
. . .

...

1 q · · · q p (q − κ1)
p
+ · · · (q − κK )

p
+


 .

(6)

The last K j columns of Xsmooth, j correspond to knots in a regression spline model for the s jt and,
analogously to the smooth DLM (3), the corresponding coefficients need to be penalized in the fitting
process to obtain smooth estimates of the f j . This approach to smoothing is described in Eilers and Marx
(1996) and Marx and Eilers (1998).

In the case of normal errors the model can be fit using the ridge regression

θ̂θθ ≡ (XTX + ���)−1XTy

where y = [yq+1, . . . , yT ]T and

��� = diag(0, 0, 0p, λ
2p
1 1K1 , . . . , 0p, λ

2p
d 1Kd , 0, 0p, λ

2).
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Here 0 is a vector of zeroes of length the same as that of γγγ , 0p is a vector of zeroes of length p and 1K

is a vector of ones of length K . The λ j , j = 1, . . . , d, represent smoothing parameters for each of the j
smooth components.

The estimated coefficients in θ̂θθ directly give estimates of α and γγγ . It is also straightforward to form
estimates of the f j (for arbitrary abscissae) and the β� from θ̂θθ . We adopt the convention

T∑
t=q+1

γ j z j t =
T∑

t=q+1

f j (s jt ) = 0 (7)

so that the functions are vertically centered about zero and hence are interpretable as departures from the
mean.

In the generalized situation iteratively reweighted least squares, with weights proportional to the current
estimated variance of y, is required. The most challenging part of the algorithm is the generalized ridge
regression. In the applications the size of the matrix to be inverted is approximately 100 × 100, so speed
and numerical stability issues need to be factored in. We found that the QR-decomposition-based approach
described, for example, in the Appendix of Hastie (1996) was suitable for meeting this challenge.

A noteworthy point about the fitting procedure is that the use of low-rank smoothers such as penalized
splines circumvents the need for backfitting, the usual method for fitting additive models. This reduces
the computational burden quite significantly, as pointed out by Hastie (1996) and Marx and Eilers (1998).

The covariance matrix of the estimated coefficients (not including the constant term) is approximately

cov(̂θθθr ) � (X̃T
r WX̃r + ���r)

−1X̃T
r cov(y)X̃r(X̃T

r WX̃r + ���r)
−1

where W = diag(w) contains the weights at convergence. If the yt are (conditionally) uncorrelated and
belong to a one-parameter exponential family then cov(y) can be estimated by W.

It is straightforward to obtain estimates of the standard errors of the f̂ j and β̂�. For example,

ŜE(β̂�) =
√

�th diagonal entry of {U cov(̂θθθr )lag UT}
where cov(̂θθθr )lag is the block of cov(̂θθθr ) corresponding to distributed lag terms.

3.5. Selection of the smoothing parameters

In the normal errors case the fitted values of the additive DLM may be written as

ŷ��� = G���y where G��� = 1
T −q 11T + X̃r(X̃T

r X̃r + ���r)
−1X̃T

r .

The generalized cross validation (GCV) criterion for selection of ��� is

GCV(���) = (T − q)‖I − G���y‖2

{tr(I − G���)}2
. (8)

Extension to the generalized context involves replacement of G��� by

Gw
���

= 1
T −q 11T + X̃r(X̃T

r WX̃r + ���r)
−1X̃T

r W. (9)

where W = diag(w) contains the weights at convergence. (e.g., Hastie and Tibshirani, 1990, p. 159).
In principle, this can be minimized over (λ1, . . . , λp, λ) to select each of these smoothing parameters.

But there are some practical problems with such an approach (see, e.g., Hastie and Tibshirani, 1990, pp.
159–160). Nevertheless, we can still use (8) to select one of the smoothing parameters if the remaining
ones are fixed by other means. This strategy is used in our analysis of the Milan mortality data, described
in the next section.
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4. ANALYSIS OF MILAN MORTALITY DATA

We analyzed the Milan mortality data using a Poisson additive distributed model, as described in Sec-
tion 3.4, with mortality as the response variable. Our model included smooth functions of temperature and
relative humidity as well as day number. The motivation for this seasonal control is that unmeasured co-
variates, such as diet, often have seasonal patterns which may be confounded with the seasonal patterns of
weather and pollution variables. In contrast, shorter-term variations in, for example, diet and smoking are
unlikely to correlate with short-term fluctuations in pollution. Hence removing the long-wavelength com-
ponents of the mortality data will avoid this potential for confounding. We choose a smoothing parameter
that reduced the residuals of the mortality regression to white noise. We also included dummy variables
for days of the week, indicators for holidays and influenza epidemics. Further details are provided in
Rossi (Rossi et al., 1999).

During the ten-year period in Milan, there was also a strong effect due to extreme temperatures. It was
difficult to model the effect of these extreme days well without using excessive degrees of freedom in the
smooth function of temperature thereby fitting noise at more moderate temperature levels. To correct for
these we added dummy variables for (1) mean temperature between 27◦C and 28◦C, (2) mean temperature
between 28◦C and 29◦C, and (3) mean temperature above 29◦C, in addition to the smooth functions of
temperature and humidity. It should be noted that, for daily time series data, individual factors such
as cigarette smoking or a diet are not confounders since these do not vary significantly over short time
intervals, and long time intervals are removed by the smooth function of time.

We fitted two models. One was a traditional model that examined the effect of TSP on the same day.
The other was our DLM that examined the effect of TSP distributed over the same day and the previous
45 days.

The model was fit using penalized splines for smooth terms as described in Section 3.4. We chose
smoothing parameters to use the same number of degree of freedom as in the paper of Rossi (Rossi et
al., 1999), so that the differences would be attributable to our use of a DLM. That study used 3.2 degrees
of freedom for temperature (plus three dummy variables for extreme days) and 3.7 for relative humidity.
We decided that 8 knots would be sufficient for estimating those smooth functions. We used 118 knots
(one for each change of month) for the smooth function of time since this has much more fine detail.
The results were not sensitive to changes of the number of knots. The smoothing parameter for this latter
component was chosen to make the deviance residuals appear to be ‘white’, via visual inspection of the
sample autocorrelation function. The smoothing parameter for time corresponded to λ = 220 with 32.9
degrees of freedom.

The smooth functions are shown in Figure 3.
The curves for mean temperature and relative humidity each show an approximate U-shaped rela-

tionship between these variables and mortality. This reflects the fact that people are more vulnerable at
extreme values of these factors.

The analysis of the residuals of the model showed no pattern remaining.
We then used GCV to choose the smoothing parameter for the distributed lag component. While it

might be considered desirable to choose all of the smoothing parameters jointly via GCV, this would
involve a very challenging optimization problem, without any guarantee of providing reasonable answer:
see the discussion on page 161 of Hastie and Tibshirani (1990). In addition, we felt it appropriate to use
the same number of degrees of freedom for covariate as the original paper.

To assess whether the results were sensitive to variation of the smoothing parameter λ, Table 2 shows
the estimate of the TSP effect for different values of λ. The values of β̂tot, β̂tot = ∑45

�=0 β̂�, do not change
significantly. The corresponding plot (not shown) presents a pattern going from very wiggly for the first
two values of λ, to a almost quadratic shape for λ = 108.

The values of the smoothing parameter chosen via GCV is λ = 8.2 × 106, which correspond to the
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Fig. 3. Smooth curve components of generalized additive DLM fit to the Milan mortality data. The dashed lines
regions (or dots in the fourth panel) correspond to plus and minus twice the estimated pointwise standard deviation
of each estimate.

Table 2. TSP estimates for some smoothing
parameters

λ β̂tot SE

104 0.000783 0.000163

105 0.000771 0.000162

106 0.000758 0.000161

8.2 × 106 0.000749 0.000161

107 0.000749 0.000161

108 0.000753 0.000161
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Table 3. Relative risk estimates and approximate
95% confidence intervals

Generalized DLM Linear TSP lag 0

1.067 (1.038, 1.096) 1.022 (1.014, 1.031)

Table 4. Results: decomposition of the TSP effect

β̂ SE R R CI 5% CI 95%

A 0.000424 0.000106 1.037 1.019 1.056

B 0.000018 0.000027 1.002 0.997 1.006

C 0.000307 0.000165 1.027 0.998 1.056

A + B + C 0.000749 0.000161 1.067 1.038 1.096

last panel in Figure 3. The value of β̂tot was also not sensitive to varying the degrees of freedom for
temperature and relative humidity. We were unable to substantially vary the degrees of freedom for time
with these data without either allowing significant positive autocorrelation at short lags or inducing major
negative autocorrelation at negative lags.

This plot is very interesting as the resulting DLM shows the basic features postulated in Figure 2. A
unit impulse of air pollution on one day produces an immediate effect that decays over the succeeding
week; we did not observe a negative effect due to the mortality displacement, but between lags 14 and 20
the values are almost zero. This is followed by a period of several weeks where small positive effects
persist, and suggests a long-term effect.

Table 3 shows the estimated relative risk (RR) for the interquartile range (IQR) of TSP (R R = exp(β×
I Q R(TSP))), and approximate 95% confidence interval (CI), based on the generalized additive DLM. For
comparison, we also give the estimates for the lag 0 of TSP.

We can then decompose the TSP effect in the three parts A, B and C as in Figure 2; the results are
shown in Table 4, where the relative risks are computed for the interquartile range of TSP.

A corresponds to the sum of the first positive parameters and describes the positive effect of TSP in
the first 15 days, with a R R = 1.037 (CI 1.019–1.056). Even if not negative, B should represents the
depletion of the risk pool. The sum of the parameter between lag 16 and lag 20 is almost zero. C is the
sum of the last 25 days and the relative risk of this period is higher (R R = 1.03, CI 0.998–1.056). The
positive parameters could be due to either an increase of the people at risk or a longer-term effect of air
pollution on individuals or both. The sum of all days (A + B + C) represents the total cumulative effect
in the long term with R R = 1.067 (CI 1.038–1.096).

As sensitivity analysis we applied parametric DLMs of degree two, three and four to the data, obtaining
similar results.

5. DISCUSSION

In this work we studied the mortality displacement with the aim to estimate the effect of air pollution
adjusting for this phenomena. Our approach was to directly fit the ‘rebound effect’ of negative correlation
between exposure and outcome due to the presumed depletion of the risk pool. We did this using a DLM
in order to study the distribution of the effect of air pollution over time. To allow for some flexibility, we
estimated this model with a smoothing function, and precisely with a penalized spline.

We found that allowing up to 45 days of delay to capture the potential rebound effect of mortality dis-
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placement, there was no evidence of a reduction of the effect size estimate for TSP. Rather, the estimated
overall effect was increased compared with results using just a one- or two-day mean. This does not mean
that there is no short-term depletion of the risk pool. Rather, it indicates that any such depletion is counter–
balanced by a combination of continuing risk out for lags up to 45 days and possible increased recruitment
into the risk pool at other time lags. Lags greater than 45 days are difficult to examine because the seasonal
control has filtered out fluctuations in daily deaths with period much longer than 45 days. These results
are consistent with the results published by Zeger et al. (1999) and Schwartz (2000a), who also reported
higher effect sizes in their harvesting resistant analyses. The report of similar patterns in three different
cities using three different methodologies strongly indicates that the effects of particulate air pollution are
not restricted to moving forward deaths by a few days or weeks, and that current published time series
results may be under estimating the effect of airborne particles. This conclusion is strengthened by the
lack of sensitivity of the estimated overall effect of particles to the choice of smoothing parameter for the
DLM shown in Table 2 or to weather control.

The use of one-day average for TSP appears to underestimate the relative risk. The estimated relative
risk based on the generalized additive DLM suggests that TSP may be responsible for approximately 7%
of the deaths in Milan and that they are brought forward by a nontrivial amount. For comparison breast or
prostate cancer are responsible for substantially smaller numbers of deaths.

The Milan data has previously been analyzed using autoregressive Poisson models and later (Rossi et
al., 1999) with the generalized additive model. The estimated effect was a 3.3% increase in total mortality
for a 100 µg/m3 change in TSP. This result for total mortality appear quite reasonable with respect to our
results. One of the main differences between the present work and the previous result is the fact that we
had to estimate the missing values for TSP to be able to estimate the DLM, and in Milan we had 19% of
missing values.

Although Milan did not experience any air pollution episodes, the DLM shows an interesting shape
which describe a dip and also a persistent, long-term effect of the air pollutant. This could be explained
by some toxicological studies. These have shown that exposure of animals to combustion particles can
produce inflammatory damage in the lung (Li et al., 1996; Gilmour et al., 1996; Pritchard, 1996; Costa
and Dreher, 1997). This suggests that exposure over time intervals of weeks may have some additional
cumulative effect that is not captured in the current short-term regression analyses. Prospective cohort
studies of particulate air pollution and daily deaths (Dockery et al., 1993; Pope et al., 1995b) have reported
substantially larger effects of long-term exposure to 10 µg/m3 of fine particles than are indicated by the
daily time series studies, suggesting that the difference may represent an effect of chronic exposure.
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