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SUMMARY
Skew-normal and skeweistributions have proved to be useful for capturing skewness and kurtosis in data
directly without transformation. Recently, finite mixtures of such distributions have been considered as ag
more general tool for handling heterogeneous data involving asymmetric behaviors across subpopulations.
We consider such mixture models for both univariate as well as multivariate data. This allows robust &
modeling of high-dimensional multimodal and asymmetric data generated by popular biotechnologicaIE
platforms such as flow cytometry.

We develop Bayesian inference based on data augmentation and Markov chain Monte Carlo (MCMC)\‘
sampling. In addition to the latent allocations, data augmentation is based on a stochastic representat|c§1
of the skew-normal distribution in terms of a random-effects model with truncated normal random effects. 3
For finite mixtures of skew normals, this leads to a Gibbs sampling scheme that draws from standarg>
densities only. This MCMC scheme is extended to mixtures of skdistributions based on representing
the skewt distribution as a scale mixture of skew normals.

As an important application of our new method, we demonstrate how it provides a new computa- S
tional framework for automated analysis of high-dimensional flow cytometric data. Using multivariate &
skew-normal and skewsmixture models, we could model non-Gaussian cell populations rigorously and 5
directly without transformation or projection to lower dimensions.
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1. INTRODUCTION
When modeling empirical univariate or multivariate dgfa. . . , yn that exhibit multimodality, skewness,
or excess kurtosis, it is often assumed that the data are independent realizations of a randomYvariable
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318 S. RUHWIRTH-SCHNATTER AND S. PYNE

from a finite-mixture distribution. This leads to the standard finite-mixture model considered, for example,
in McLachlan and Peel (2000) andifiwirth-Schnatter (2006). An important special case of such a model
is a mixture of normal distributions which allows an arbitrarily close modeling of any distribution by
increasing the number of components. The flexibility, however, causes problems when such a model is
used in a clustering context because several normal distributions may be necessary to capture skewness
and kurtosis of a single cluster, thus leading to wrong inference about the number of clusters in the
data (Jasrand others 2006). Similarly, in the context of supervised learning, groups of observations
represented by asymmetrically distributed data can lead to wrong classification.

For illustration, we show in Figure 1, the histogram of the global cognition scores of 451 patients
suffering from Alzheimer’s disease (AD). These data will be analyzed in detail in Section 4.1. The left-
hand side of Figure 1 shows the result of fitting a 3-component mixture of normal distributions which
correspond to the optimal number of components as will be demonstrated in Section 4.1. Interestingly, th%?
bimodality of the fitted mixture indicates the presence of 2 clusters, however, the normal mixture needs 2=
components to fit the skewness present in the second cluster.

To address such practical issues formally, attention has shifted recently toward finite-mixture modelss
where the component densities themselves capture skewness and excess kurtosis. Applications and c%e
studies for modeling with skew distributions now include research areas, such as economics, financeg_
climatology, environmetrics, engineering, and biomedical sciences (Genton, 2004). On the other hand, for
robustness against outliers in multimodal data, mixtures of Studeistributions have been applied by
Peel and McLachlan (2000) and Land others(2004) which allow for heavy tails of each component.
Very recently, application of finite-mixture models have been to the univariate skew-normal (Lin, Lee, and
Yen, 2007) and skew-distribution (Jasrand others2006; Lin, Lee, and Hseih, 2007), to the univariate
skew Student-normal distribution (Cabradnd others2008), and to the multivariate skew-normal (Lin,
2009) and skew-distribution (Lin, 2010; Pynand others2009).
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Fig. 1. Gaussian and skew-normal mixture modeling of AD data set. The histogram, common to both plots, shows
the univariate cognition test scores of subjects in the data set. The “rugplot” common to both plots (it appears just
below thex-axis in either plot) shows each subject’s genotype. A darker point in the rug indicates more e4 alleles in
a subject’s genotype implying higher risk factor for AD. In the left-hand side plot, fitting of a 3-component Gaussian
mixture is shown. In the right-hand side plot, fitting of a 2-component skew-normal mixture is shown.
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Following this important work, we consider univariate as well as multivariate skew-normal and skew-
distributions as defined by Azzalini (1985, 1986), Azzalini and Dalla Valle (1996), and Azzalini and Cap-
itanio (2003) as building blocks for a finite-mixture model. We apply our methodology to the (univariate)
clinical data from AD introduced above and will show that the optimal mixture of skew-normal distribu-
tions needs only 2 components to fit the observed distribution, see the right-hand side of
Figure 1. In addition, we consider clustering multivariate flow cytometric data from Graft versus Host
Disease (GvHD). Flow cytometry is a biotechnological platform commonly used in immunology, cancer
biology, and molecular biology. It is used to investigate expression of proteins on the surface and withing
every cell in a given sample with fluorophore-conjugated antibodies (or markers). Currently, up to 17 3
markers can be measured for each of the tens to hundreds of thousands of cells per samplegRerfetto 2
others 2004), thus producing high-throughput high-dimensional data. In addition, flow cytometric data %
are often multimodal, skewed, and noisy. At present, the analysis of flow cytometric data analysis, whichg
involves identification of cell populations, is done manually by projecting the data in 2D. Our Bayesian =
mixture modeling with multivariate skew distributions can allow automatic high-dimensional clustering @
to substitute the current slow and subjective manual approach to flow cytometric data analysis. As note@
above, our model also allows the asymmetry in data to be modeled directly without the need for any‘a’
transformation which might lead to imprecise inference about the number of clusters in a data set. 3

Although the extension from a standard to a skew finite-mixture model appears quite natural, the actuag
estimation results in a complex computational problem. Subsequently, we pursue a Bayesian approadgl
using data augmentation and Markov chain Monte Carlo (MCMC). Toward this, we use a representations
of the skew-normal and the skawdistribution that combines the standard hierarchical representation of a
finite-mixture model introduced in Diebolt and Robert (1994) with a stochastic representation of the skew-
normal and the skew-distribution in terms of a random-effects model with truncated normal random
effects (Azzalini, 1986; Henze, 1986). After applying a suitable transformation of the component-specific £ 2
parameters, this leads to a straightforward MCMC sampling scheme that involves a 2-block Gibbs sampleg—
for finite mixtures both of univariate and multivariate skew-normal distributions. For finite mixtures of
univariate and multivariate sketwdistributions, a third block has to be added that involves a Metropolis—
Hastings step for the degrees of freedom and a Gibbs step for the latent scaling factors in the infinite
mixture representation of the skevalistribution.

The rest of the paper is organized as follows. Section 2 reviews skew-normal ant diskibutions.
Section 3 introduces finite mixtures of such distributions and discusses Bayesian estimation using MCMC
Section 4 provides applications to clustering univariate clinical data from AD and multivariate cytometric
data from GvHD.
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2. SKEW-NORMAL AND SKEW-t DISTRIBUTIONS
2.1 The scalar skew-normal distribution

A univariate random variablX follows a standard skew-normal distribution with skewness parameter
X ~ SN (a), if the density takes the form(x|a) = 2¢ (X) @ (aX), whereg (-) and® () are, respectively,
the probability density function (pdf) and the cumulative distribution function (cdf) of the standard normal
distribution. Evidently, foe = 0, the standard normal (0, 1) results. Choosing # 0 leads to a density
with a skewness coefficient ir-0.9953 0.9953]. The first systematic treatment of this density has been
given by Azzalini (1985, 1986).

In our subsequent Bayesian analysis, we use the following stochastic representations of the skew-
normal distribution (Azzalini, 1986; Henze, 1986). L&t~ T N0,«)(0, 1) ande ~ N(0, 1), indepen-
dently, and leb € (—1, 1). The random variabl& defined by

X =6Z+1-0% 2.1)
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follows the standard skew-norm&l\V (a) distribution with skewness parameter= §/+/1 — 62. Thus,

the skew-normal distribution may be seen as the superposition of a normal random variable with a latent

truncated standard normal random effect.
The expectation and the varianceXfre given byE(X) = \/gé andV(X) =1- %62. To adjust for

an arbitrary location and scale, a location paraméterk and a scale parametere ®™ are introduced.
The random variablyy = & 4+ wX, whereX ~ SN (a), is said to follow the skew-normal distribution
SN (&, w?, o). The density of this distribution reads:

y—-¢

2
fsar(y; &, 0, a) = ~¢ (T) D(aw~y - &)). (2.2)

A stochastic representation of ti6V (¢, w?, a) distribution is obtained by applying the affine transfor-

mationY = ¢ + wX to (2.1):

Y =&+ wdZ + oVl — 0%, (2.3)
whereZ ~ TNo,«)(0, 1) ande ~ N (0, 1), independently and = a/(v/1 + a?).

2.2 The multivariate skew-normal distribution

A multivariate version of the skew-normal distribution has been defined in Azzalini and Dalla Valle (1996)
by generalizing the stochastic representation (2.1).rTbemponents of a multivariate random variable

X = (xl,...,xr)/ e R" are defined foj = 1,...,r asX; = 5,-Z+‘/1—5j2.9j,where6,- e (-1,

Z ~ TN1,x)(0, 1) as before, and = (¢, .. ., er)’ ~ N (0, Q,) is independent oZ and multivariate
normal with an arbitrary correlation matr®,. Applying the affine transformatiod = & 4+ @X with
location parametef = (&1, ..., ér)’ € ®' and diagonal scale matrias = Diadws, . .., or) with wj > 0
immediately leads to the stochastic representation

Yj:é:j'i‘a)jéjz—'-a)h/l—éjz&‘j. (2.4)

The resulting distribution is called the basic multivariate skew-normal distribution, denotétd\iy
(&, Q, a), with density

fsn (i €,.Q,a) = 26 (y — & Q)0 (@ 0y — ), (2.5)
whereg (x; Q) is the pdf of the multivariate zero meavi (0, Q) distribution and®(-) is the cdf of the
univariateN (0, 1) distribution. The parametets andQ are related to the parameteys= (64, .. ., 5r)’,
o andQ; in the stochastic representation (2.4) through

_ R
Q-—0lo, a=—-——0Q ', (2.6)

V1-46

whereQ = AQ,A + 6 andA = Diai,/l -2, ..., J1— 5?) Thematrix Q is a correlation matrix
becausdj; = (1 —09)(Qe)jj + 67 = 1, thusQjj = w?.

Given the parametefé, Q, a) of a SN; (&, Q, a) distribution, the parameter®, o, Q.) in the
stochastic representation (2.4) are obtained from

I _ ,
6=——Qa, Q.=A'QA'-aa, (2.7)

V1+a'Qa
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whereQ = 0~ 1Qw 1 with @ = DiagQ)/? being a diagonal matrix obtained from the diagonal elements
of Q&= (41,...,a) withdj =9/, /1— 512 andA is the same as above. The marginal distribution of
Y; is equal to the scalar skew norn@&N (&, wlz aj), hence,

E(Y) =¢'+w6@. (2.8)

For alternative ways of constructing multivariate skew-normal distributions, see Arellano-Valle and
Azzalini (2006).

2.3 Skew-t distributions

The kurtosis coefficient of a skew-normal distribution is restricted to the intery8l$892]. To achieve

a higher degree of excess kurtosis, skegistributions have been introduced by Azzalini and Capitanio
(2003). A univariate random variab¥follows the scalar skewdistribution,Y ~ ST (&, w?, a, v), if it

has the following stochastic representation:

X
Y = A 2.9
“w\/W’ (2.9)

whereX ~ SN(a) andW ~ G (%, 5), independently. The Gamma distributigita, b) is defined with
densityp(yl|a, b) = b?y2~1e=®/T'(a). The pdf ofY reads:

2 v+1
fsT(y; &, 0 = Sty (xy)T |— ’ 2.10
ST(y; é:s -, a, V) w (Xy) v+1 (axy ¥ + X)% ( )

wherexy = (y — ¢)/w andt, andT, denote, respectively, the pdf and the cdf of a standard Student-
distribution withv degrees of freedom. A random variaMaaking values irik" follows the multivariate
skewt distribution,Y ~ ST, (£, Q, a, v), if it has the following stochastic representation:

1
— X,
v W
whereX ~ SN;(0,Q, &) andW ~ G (3, 5), independently. The pdf of reads:

fs7(y; &, Q, a,v) = 2f, (v; &, Q,0) Ty (a/w—l(y -8/ v” :(5 ) (2.12)
y

wherew = DiagQ)Y?, Qy = (y — &)'Q7Xy — &), f, (y; &, Q, v) denotes the pdf of the multivariate
Studentt distributiont; (£, Q, v), andT, denotes the cdf of the scalar standard Studetistribution as
above. The skew-distribution converges to the skew-normal distributionas oco. For anyr > 1, the
expectation of the skewdistribution, provided that > 1, is given by

v (v -1)/2)

Y=¢+ (2.11)

3. SKEW-NORMAL AND SKEW-t FINITE-MIXTURE MODELS

We consider univariate and multivariate finite-mixture models where the component depéjtigk),
k=1,...,K, arise either from a skew-normal or a skéwdistribution with component-specific
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parametedy. The marginal distribution takes the form of a finite-mixture distribution with weights
(m, ..., 1K) WhereZkK:1 nk = 1, for example, for a mixture of scalar skew-normal distributions:

P(YilO1, ..., 0k, n) = n1fsn (Vs &1, @2, a1) + -+ 7k fsn (Vs &k 0%, oK)

or for a mixture of multivariate skew-distributions:

PYilO1,...,0k,n) =nifsT(Vi; &1, Q1 a1,v1) + - - + 5k fs7(Yis &k, Qk, ak, vk).

Although this extension appears quite natural, the estimation of such a finite-mixture model results in a
complex computational problem. In our subsequent Bayesian analysis, we combine the stochastic re
resentations of the skew-normal and the skedlistribution discussed in Section 2 with the standard

hierarchical representation of a finite-mixture model in terms of a sequence of latent allocations. This

leads to a straightforward MCMC sampling scheme.

3.1 Finite mixture of random-effects model representation

Like any other finite-mixture model, mixtures of skew-normal or skeglstributions may be regarded
as hierarchical latent variable models, where the distribution of the observgtiengys, ...

specified conditional on latent allocatioBs= (S, ..., SN):

N N
YIS, 01,....0) =[] pMilS.01,....0) =[] pyilOs).
i=1 i=1

(3.1)

,YN) is

where P(§ = klp) = i, k =1,...,K andS,, ..., Sy are mutually independent. Conditional &

the distribution underlyingp(y; |#g ) is represented as in Section 2 as a random-effects model. Thus, we
obtain a representation of skew-normal or skemixtures in terms of finite mixtures of random-effects

models with truncated normal random effects.

peojumo(
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For scalar skew-normal mixtures as defined in (3.1), the application of (2.3) to each component densityS
(@]

leads to the following representation fo= 1, ..., N,

zi ~ TN0,5)(0, 1),

Yil(S =K) = & + oxdezi + oy /1 — S2ei, & ~ N(0, 1),

wherezy, ..., zy andes, ..., en are mutually independent. To implement our Bayesian approach, we
introduce a new parameterization in terms of the component-specific parafijeter&, vk, akz), where

wk = oxd ando? = w2(1 — 52):

z ~ TN[0,)(0, 1),

Vil(§ =K =&+ iz +6, & ~N(©O,0d).
The original parametd#y = (&, wﬁ o) is recovered through

Yk 2 2 2
ak = —, O =0+ Y
ok

becauseyk/ok = okdi/(wky/1 — 02) = ax ando + yZ = o (1 — 32) + 0o = i

(3.2)

(3.3)

¥20Z Yyoie g1 uo 1senb Aq yzzg
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Representation (3.2) offers several advantages. First, a conditionally conjugate pfipefati, wi,

akz) is available and, second, straightforward estimation using a 2-block Gibbs sampler becomes fea-

sible, see Section 3.2. A related representation with random-effects distrilmution7T Ao, (0, wﬁ)
has been used in Lin, Lee, and Yen (2007), howei(@rqoﬁ, anddy are sampled in different blocks and
a Metropolis—Hastings algorithm is needed to sanle. ., dk, while representation (3.2) allows to
sample all component-specific parameters jointly from a closed-form posterior.

A similar representation is available for mixtures of multivariate skew-normal distribuSdMs(&y,
Q,ax),k = 1,..., K, where the componentwise application of (2.4) leads to a mixture of random-
effects models with repeated measurements and a univariate truncated normal random effect:

zi ~ TN|0,x)(0, 1),

Vil(S =k) =&+ vz +€, € ~N (0, Zy), (3.4)
with z1,...,zy and €1, ..., en being mutually independent. We introduced the parameterization
0 = (&« vk Zk), as we did for scalar skew-normal mixtures, wherg = (w1, ..., Wkr)/ with

wkj = axjokj andZy = Qk—l/lkl/li(. The form ofZy results from (2.7) 2k = wx Ax(Q¢ )k Axwk = Qx—
ok Akak(oxAxax) . The matrixAgay is a diagonal matrix with(Axak)jj; = \/1 - 5,%1- (Skj/\/l - 5,%1- =
okj, thereforewk Axax = . The original parametet, = (£, Q«, ax) is recovered from

1
"o-1
VI vy

For skewt mixtures, we combine the stochastic representations (2.9) or (2.11) with the random-effects
representation of the skew-normal distribution. For a finite mixture of scalar skistributionsS7T (&,
wi, ak,vi), k=1,..., K, this yields

Q= Zk+ yyyy ak= o . (3.5)

(S — Ky~ (e P
wil§ =k ~6 (5. 3). (36)
1
zZi|lwi ~ TN1o,00) (0, E) , (3.7)
|
Vil(S =k wi) =&+ wz +6, & ~N(O, o2 /wi), (3.8)
wherews, ..., wy are mutually independent as azg ...,zN andes,...,en given wy, ..., wN. A
finite mixture of multivariate skew-distributionsS7T; (&, Q«, ak,vk), K = 1,..., K, has a similar

representation with a repeated measurements observation equation:
1
I

wherezs, ..., zy andeq, ..., €N are mutually independent givem, . .., wy. The variance of the trun-
cated normal random effegt depends on the latent scaling factar which results from multiplying in
(3.2) or (3.4) @ N0,00) (0, 1) random variable with A, /w;.

As for skew-normal mixtures, we use an alternative parameterization with component-specific
parameted; = (&, wk, akz, vk) and@y = (&, vy, Zk, vk), respectively. This allows Bayesian esti-

11JB/SO1)S11E)S0Iq/W00°dno olwapeae//:sdiy Woll papeojumo(]
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mation through a 3-block MCMC sampler where only sampling of the degrees of freedom parameters

V1, ..., VK requires a Metropolis—Hastings step.
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3.2 Bayesian estimation

To perform a Bayesian analysis, we first have to select a prior for the weight distribptaond the
component-specific parameters. It should be noted that, in general, the prior distribution has to be selected
carefully in the context of finite-mixture models. First of all, it is not possible to choose an improper prior
because this leads to an improper posterior density (see, élgwiFth-Schnatter, 2006, Section 3.2).
Furthermore, as noted by Jennison (1997), one should avoid trying to be as “noninformative as possible”
by choosing large prior variances because the choice of the prior of the parameters strongly affects th@
posterior of the number of componer{swhich will be considered in Section 3.3 for selectidg For

this reason, we extend the hierarchical priors introduced by Richardson and Green (1997, Section 2.4) i
the context of mixtures of normals and by Stephens (1997) in the context of mixturessfibutions to
skew-normal and skewmixtures. Such hierarchical priors are known to reduce sensitivity with respect
to choosing the prior variances.

Concerning the weight distribution, we apply the commonly used Dirichlet distribytion D(ey,

.., ). Nobile (2004) showed that the parameggrexercises considerable influence on the posterior
distribution of K because this parameter strongly affects the link between the marginal likelihoods of
finite-mixture models wittK — 1 andK components. Frhwirth-Schnatter (2006, Section 5.3.2) demon-
strated that this link is reduced considerably by seleatinigrger thaneg = 1, which is the value com-
monly used in the literature.

Concernlng the component-specific parameters, we specify priors for the transformed parameters

1. ..., 0% introduced in Section 3.1 rather than directly &, . .., 8« . Using the representations dis-
cussed in Sectlon 3.1, conditionally conjugate priors taking the form of normal-gamma distributions are
available for all transformed component-specific parameters except the degrees of freedom paramete
V1, ..., VK. The prior onv is a slight modification of a prior introduced byahez and Steel (2010) for
Studentt mixtures withvy = --. = v. Further details for all priors are provided in Section A of the
supplementary material availableBibstatisticsonline.

Following the seminal paper by Diebolt and Robert (1994), the most popular method for Bayesian
estimation of finite mixtures is to apply MCMC methods (seétwirth-Schnatter, 2006, Section 3.5, for
an extensive review). This approach is extended to skew-normal andtgkéxtures using the represen-
tations introduced in Section 3.1. We introduce the latent allocatoas (S, ..., Sy) and the latent
random effectz = (z1, ..., zn) as missing data and add the latent scaling faatots (w1, . . ., wy) for
skewt mixtures. MCMC sampling is based on the following observations.

First, as for more conventional finite-mixture models, it is possible to sample the allocStgivnsn
the component-specific parametéis . . ., 8 and the weighty = (1, .. ., 7k ) without conditioning
on the other latent variablesandw) because the component densities are available in closed form, see
Section 2.

Second, conditional o8 (andw), we consider skew-normal and skévmixtures as random-effects
models with a normal observation equation and a truncated normal random effect. A nice property of suc
a model is that the full conditional of the random effecgiven the observatioy; is available in closed
form, see Section B.1 of the supplementary material availabRicstatisticsonline. This allows joint
multi-move sampling of the latent variabl8andz

Third, conditional orS, z, (andw) sampling of the transformed component specific paraméers .,

0% (exceptthe degrees of freedom) reduces to Bayesian inference for a finite mixture of regression models
with known allocations. For each grolp (&} y/[()/ is a regression coefficient arElk is an error covari-

ance matrix in a regression model with a conditionally conjugate prior, allowing joint sampliig o,

and Xy from a closed-form posterior distribution.

As a result, MCMC estimation for skew-normal mixtures is possible through a 2-step Gibbs sampler
if all hyperparameters are fixed:

1501q/WEH-dno-o1wapeae;/:sdpy Woly pepesjumo
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(a) Sampld7, ..., 0% andy conditional orz, S, andy.
(b) SamplezandSjointly conditional ond7, ..., 8%, n, andy.

All conditional densities are of closed form, see Section B.2 of the supplementary material available
at Biostatisticsonline, which also contains details on sampling under a hierarchical prior. For MCMC
estimation of skew-mixtures, a third step has to be added:

(a) Sampld, ..., 0% (exceptvy, ..., vk) andy conditional org, S, w, andy.
(b) SamplezandSjointly conditional ond7, ..., 8%, n, w, andy.
(c) Samplevy, ..., vk andw conditional ony and the remaining parameters.

All conditional densities excep(v1, ..., vk |-) are of closed form, see Section B.3 of the supplementary
material available a@Biostatisticsonline for details.

Like for any finite-mixture model, a nonidentifiability problem is present because the labeling of the
components in the mixture density may be changed without changing the likelingdd), see, for
example, (3.1). This might cause label switching during MCMC sampling which makes it difficult to
estimate component-specific parameters from the MCMC output. Various methods have been suggest
in the literature do deal with this problem, (see, e.g. Cekauk others2000; Stephens, 2000; Jasirad
others 2005). Here, we follow Rrhwirth-Schnatter (2001) who suggested to add a random permutation
step to the MCMC scheme and to postprocess the resulting MCMC output to identify component-specificd
parameters, see Section B.4 of the supplementary material avail@iestitisticsonline for more details.

'dno onfBpeoey/:sdpy wouy papeojumoq

3.3 Selecting the number of components

Selecting the number of components of a finite-mixture model is a challenge (@eeiffh-Schnatter,
2006, Chapter 5, for a recent review). Popular methods implement reversible jump MCMC, compute
marginal likelihoods, or use model choice criteria.

Reversible jump MCMC was introduced by Richardson and Green (1997) to select the number on
components for univariate mixtures of normal distributions. This method is based on creating a Markov4
chain that moves between finite mixtures with different number of components while retaining detailed 5 B
balance that ensures the correct limiting distribution. Those moves have to be based on carefully selecta@
degenerate proposal densities. The design of suitable proposals for higher-dimensional mixtures is qunea
challenge, see, for example, Dellaportas and Papageorgiou (2006) for multivariate normal mixtures. Slncg
adding skewness even complicates matters, we did not pursue reversible jump MCMC.

Alternatively, the choice oK may be based on the posterior probabifiyM « |y) of a finite-mixture
model Mk with K components, given byp(Mkly) o p(y|Mk)p(Mk), where p(y|Mk) is the
marginal likelihood andp(M) is the prior probability of Mk, for instance, a truncated Poisson
distribution (see, e.g. Nobile, 2004).

Also the computation of the marginal likelihoga(y| M) turns out to be challenging for skew-
normal and skewt-mixtures. For moderat& , sayK < 5, we follow Fithwirth-Schnatter (2004) who
demonstrates that the technique of bridge sampling (Meng and Wong, 1996) is a useful method of com-
puting the marginal likelihood of a finite-mixture model and is superior to alternative sampling-based
approaches such as importance sampling (Neal, 2001). Like importance sampling, bridge sampling is
based on an i.i.d. sample from an importance density, however, this sample is combined with the MCMC
draws from the posterior density in an appropriate way. An important advantage of bridge sampling over
importance sampling is that the variance of the resulting estimator depends on a ratio that is bounded
regardless of the tail behavior of the underlying importance density.

For larger values oK, all simulation-based estimators including bridge sampling turned out to be
unstable. For such mixtures, model choice criteria may be considered. One such criterion is the Bayesian
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information criterion (BIGx) that is an asymptotic approximation & log p(y| Mk ):
BICk = —2logp(y|dx, Mx) + dk logN, (3.10)

wheredx = (2r + DK =1+ Kr(r+1)/2 = dy for skew-normal mixtures andk = dE + K for skewt
mixtures.@K is an approximate maximum likelihood (ML) estimatordbt = (61, ..., 0k, n) obtained
by maximizing the log of the observed-data likelihood functionpgg|d x , Mg ) over the MCMC draws.
If the distribution family underlying the component densities is correctly specified, thex Bl&€own
to be consistent (Keribin, 2000), although in small data sets, it tends to choose models with too few
components (Biernackand others 2000). On the other hand, simulation studies reported in Biernacki
and Govaert (1997), Biernackind others(2000), and McLachlan and Peel (2000, Section 6.11) show
that BICk will overrate the number of clusters under misspecification of the component density, whereas
several alternative criteria such as the approximate weight of evidence ¢ Nartfl the integrated classifi-
cation likelihood (ICLk ) criterion to be discussed below are able to identify the correct number of clusters
even when the component densities are misspecified. Thug, BIClustering large data sets, where the
component densities of the finite-mixture model may not be correctly specified, is likely to be imprecise.
AWE( is derived in Banfield and Raftery (1993) as another approximation to minus twice the log of
the marginal likelihood. AWk is described in Biernacki and Govaert (1997) as a criterion that penalizes
the log of the complete-data likelihood function with model complexity:

AWEK = —2log p(y, 819 ) + 2dk (g +log N) , (3.11)

~C 2 . - o . -
whered . andS are determined jointly as that combination of parameters and allocations that maximize

the log of the complete-data likelihood lquy, S|9«) = ZiN:l log(ns pP(Yil@s)). @E is approximated
by the posterior draw maximizing the complete-data likelihood function.

Biernackiand otherq2000) introduced the ICk that has been shown by McLachlan and Peel (2000,
p. 216) to be approximately equal to

ICL—BICk = BICk + 2EN@). (3.12)

EN(J ) is the entropy defined by

N K

EN@K) =— > > Pr(S =Klyi, 9k)log PI(S = klyi, 9)

i=1k=1

and measures how well the finite-mixture model defined Ryclassifies the data intid distinct clusters.
Thus, the ICI=-BICk criterion penalizes not only model complexity but also the failure of the model to
provide a classification into well-separated clusters.

Recently, the deviance information criterion (DIC) introduced by Spiegelhatigiotherg2002) be-
came a popular criterion for Bayesian model selection because it is easily computed from the MCMC
draws. However, the application of DIC to finite-mixture models is not without problems as discussed
recently by Celewand others(2006). A first problem is the choice of the appropriate likelihood func-
tion that could either be the observed-data likelihood functiongggd ), the complete-data likelihood
function log p(y, S|¥ k), or the conditional likelihooda(y|S, ¥ ). Second, the calculation of DIC re-
quires an estimator of the unknown parameter which may suffer from label switching as discussed
above, making DIC unstable. Finally, DIC involving the complete-data or the conditional likelihood re-
quires some way of handling the problem ti$at unobserved, either by integrating with respect to the

202 UoIBIN €1 U0 158NB Aq $22892/.L€/Z/1 1/9101E/SONSEISOIq/ W00 dNo-olWapeoe/:sdiy Wolj pepeojumoq



Bayesian inference for univariate and multivariate skew-normal and skew-t mixtures 327

posteriorp(Sly, M) or by using an estimator & where once more the label switching problem has to
be addressed.
In reaction to these difficulties, Celeand others(2006) investigate in total 8 different DIC crite-
ria. DIC,, for instance, focuses on the marginal distribution of the data and considers the allocations as
nuisance parameters. Consequently, it is based on the observed-data likelihood:

~ M
DICo k = —4Ey, (log p(y|9k)ly) + 2logp(yld ,Y), (3.13)

where the posterior mode estima'ﬁql\(/I which is invariant to label switching is obtained from the observed-
data posteriop(¥k |y, Mk).

Based on several simulation studies, Celana other2006) recommend using DiQvhich is based
on computing first DIC for the complete-data likelihood function and then integrating with respect to the
posteriorp(Sly, Mk):

DIC4k = —4Ey, s(log p(y, SI9k)ly) + 2Es(log p(y, Sidk (S)1y). (3.14)

The application of this criterion requires the computation of the complete-data estifhatBy for each
draw from the posteriop(Sly, M) which is straightforward only for simple mixture models, where the
complete-data posterigr(k|y, S) is of closed form. However, this is not the case for the class of skew
finite mixtures. Celewand otherg2006) show that substituting (S) by the posterior mode estimator

? :\f an approximation to DIgk is obtained which penalizes DjG by the expected entropy:
DIC4a,k = DIC2k 4+ 2Ey, (EN(@K)IY). (3.15)

For skew finite mixtures, both DIk as well as DIG, k are easily estimated from the MCMC draws
from the posteriorp(d« |y, Mk) by substituting all expectationgy, (-|y) by the average over the
MCMC draws. Note that the label switching is not a problem here because boftiyatk ) as well
as EN?¥ k) are invariant to changing the labeling of the groups.

4. APPLICATIONS
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When the observations in a study generate asymmetric data, even moderately imprecise models could le
to erroneous classification of the subjects. As shown in the following examples, we address this proble
with the help of precise skew mixture modeling.

4.1 Skew-normal mixture modeling of Alzheimer's disease data

N €1 uo JSanS?Kq

oJe

AD is a complex disease that has multiple genetic as well as environmental risk factors. It is commonly
characterized by loss of a wide range of cognitive abilities with aging. For the present analysis, the data,
set consists of 451 subjects from the cohorts of the Religious Orders Study, see a¥itsotherg2004)
and the Memory and Aging Project, see Benaeid otherg2005). The level of cognition of the subjects
was clinically evaluated proximate to their death based on tests of cognitive functions and summarized
by a mean global cognition score, with higher scores suggesting better cognition capabilities. The genetic
risk factor Apolipoprotein E (ApoE) polymorphism was determined by genotyping the DNA from the
subjects’ blood.

Since the distribution of global cognition scores appeared to be skewed, see again Figure 1, we applied
skew-normal and skewmixture models withKk = 1, ..., 4 components. Bayesian analysis is based on
the priors introduced in Section A of the supplementary material availatiostatisticsonline with
different sets of hyper parameters. For all pridrg, = bg = 0 andgp = 0.5, while we consider 4
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Table 1. Choosing the hyper parameters- DDY, ¢y, and ¢ of the prior in skew-normal and skew-t
mixture modeling of AD data set:?R= 1—¢/(co— 1) is the prior expectation of explained heterogeneity;
d is an additional hyperparameter for skew-t mixsir

DS = DV co ¢ R? d Median ofvy
Prior 1 0.1 25 0.5 2/3 Al+2) 10
Prior 2 0.01 25 0.5 213 Al+/2) 10
Prior 3 0.1 5 4/3 2/3 AL+ 2 10
Prior 4 0.1 25 1 1/3 AL+ 2 10
Prior 5 0.1 25 0.5 2/3 AL+ /2) 5

different settings foD¢ = DY, co, and¢ and 2 different values fod for skewt mixtures, see Table 1

for details. Compared to the other priors, prior 2 introduces considerably smaller prior information for
the location parametef and the skewness parameter prior 3 introduces stronger smoothing for the
group specific variancea_z, e, a%, and prior 4 assumes a smaller prior expectation of the heterogeneity
explained by differences in the group locations. Prior 5 applies only to skeixtures and reduces the
prior median ofux by 50% compared to the other priors.

For eachK and each prior, we generate 50000 MCMC draws after a burn-in of 10000 draws by
using the MCMC schemes described in Sections B.2 and B.3 of the supplementary material available a
Biostatisticsonline.

To select the optimaK, marginal likelihoodsp(y| Mk ) are computed for each prior as described in
Section 3.3 and are combined with a truncal@)-prior for K. The resulting (honnormalized) posterior
probabilities lodp(y|Mk) p(Mk)) are reported in Table 2. The same table reportsB#dd DIG k
for the various priors. Although BIg is independent from the prior, differences in the estimated values of
BICk occur caused by random fluctuations of the approximate ML estimator across MCMC runs. Table 2
reports the smallest Bl among all MCMC runs. Table 2 does not report the remaining criteria intro-
duced in Section 3.3 because, regardless of the prior, AWEL—BICk, as well as DIG k selected a
model withK = 1 which, however, contradicts common knowledge of AD classification.

For skew-normal mixtures, both the marginal likelihood as well asB#€lect a model with 2 com-
ponents for all priors considered. In contrast to that, tGshows high sensitivity to prior choices and
the selected number of components ranges from 2 to 4. For skewtures, we find that Blg favors
a 2-component mixture, however, this model is outperformed by the 2-component skew-normal mixture.
In contrast to skew-normal mixtures, model selection based on marginal likelihoods is sensitive to prior
choices. Under prior 1 and prior 5, the marginal likelihood rejects skevixtures in favor of a single
skewt distribution. For prior 2 and prior 4 = 2 is selected, while prior 3 leads to choosikg= 3.

Upon comparison of all models, we find a preference for a skew-normal mixture with 2 components for all
priors. For skewt-mixtures, sensitivity of DIG  to prior choices is even higher and the selected number
of components ranges from 1 to 4.

For comparison, we also fitted finite mixtures of normal distributions where the priors are selected
similarly as in Richardson and Green (1997). The marginal likelihoods are computed aghimirk-
Schnatter (2004) angp(Mk) is the same as above. The (nonnormalized) posterior probabilities
log(p(y|Mk)p(Mk)) together with BIG and DIG k are reported in Table 2. The first 2 criteria select
a normal mixture with 3 components, while Di& leads to choosin = 4.

When the 3-component normal mixture is compared with the 2-component skew-normal mixture, the
latter one is preferred by the marginal likelihood and Bl@egardless of the prior. Figure 1 shows that
the fitted density is practically the same for both finite mixtures. While one of the clusters is comparable
for both mixtures (see the leftmost cluster in the left-hand and the right-hand side of Figure 1), the normal
mixture needs 2 components to fit the skewness in the second cluster.
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Table 2. Selecting the number K of components in Gaussian and skew-normal and skew-t mixture
modeling of AD dataet

K
Skew-normal mixtures 1 2 3 4

BICk 1376.25 1363.13 1385.29 1404.09

log(p(y|Mk ) p(MK)) Prior 1 -690.11 -684.28 -686.97 -692.80
Prior 2 —-690.88 —682.68 —-688.74 —697.69 g
Prior 3 —-690.80 —-683.79 —685.94 —-691.60 5
Prior 4 —691.16 —683.89 —686.48 —692.87 §_
DIC, k Prior 1 1363.98 1345.40 1345.89 1344.68 ‘_é’t
Prior 2 1363.81 1335.14 1337.65 1335.24 g
Prior 3 1363.94 1340.54 1335.23 1351.47 >
Prior 4 1364.10 1343.33 1346.66 1351.14 §
Skewt mixtures 1 2 3 4 %?
BICk 1382.32 1375.76 1406.15 1436.53 f%’
log(p(y|Mk)p(MK)) Prior 1 —690.65 —-695.38 —-692.89 —698.74 3
Prior 2 —-693.48 —-687.82 —-692.00 -700.87 g
Prior 3 —693.20 —698.49 —692.43 —696.77 2
Prior 4 —-693.58 —-691.77 —-693.25 —-698.12 %
Prior 5 —693.55 —696.95 —696.93 —-700.47 g
DIC2,K Prior 1 1363.48 1369.19 1359.07 1350.87 %
Prior 2 1363.73 1341.41 1340.78 1343.30 @
Prior 3 1364.23 1375.39 1344.26 1347.87 2
Prior 4 1364.53 1372.33 1355.57 1354.62 3
Prior 5 1364.87 1388.21 1378.25 1367.83 %
Normal mixtures 1 2 3 4 é
BICk 1473.93 1371.69 1369.09 1378.97 §
log(p(y|Mk ) p(MK)) —740.70 -686.87 —685.83 -686.30 3
DIC, k 1465.70 1350.60 1354.37 1345.76 %
Bold values indicate the selected number 5
a
The 2-component skew-normal mixture is identified for each prior as described in Section B.4 of the 5
supplementary material availableBibstatisticsonline. Figure 2 shows the resulting posterior drawsof g

andas for prior 1. The estimated parameters are reported for all priors in Table 3. Evidently, the skewness
parametet is sensitive to selecting the prior informati@ andD¥ which is much smaller under prior
2 than for the other priors. On the other hand, the expected cognitive gg@ned the group sizeg are
insensitive to prior choices. For all priors, the first component has a much higher expected cognitive scoreé2
1k than the second one and exhibit considerable negative skewness. The skewness payépetsitive
for the second component, however, strongly depends on the prior and exhibits very large standard errors.
Among the genetic risk factors for AD, the pivotal role of ApoE gene is well established (Wilson
and others 2002; Roses, 1997). There are 3 different allele polymorphisms of the gene in general
population—e2, €3, and e4—and the number of copies of e4 is linked to increased risk of early onset
of the disease. Hence, an individual with the homozygous alleles e44 (i.e. both alleles are e4) carries
greater risk than one with heterozygous e34 (i.e. an €3 and an e4); the latter, in turn, has greater risk than
e24 (which however has normal risk similar to €33) as those with e2 alleles have reduced risk of early
onset of AD.
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Fig. 2. Two-component skew-normal mixture modeling of AD data set. Posterior draws obtained under prior 1 for the

S. RUHWIRTH-SCHNATTER AND S. PYNE

2 25 3

skewness parametets (left-hand side) and (right-hand side) after identification.

Table 3. Two-component skew-normal mixture modeling of AD data set. Parameter estimation under
different priors using posterior means (posterior standard deviations iBmthesis)

x 10

2

k &k off oK uk =E(I§ =Kk 1K
Prior 1 1 0.36 (0.11) 1.26 (0.37) —2.61(0.78) —0.46 (0.096) 0.767 (0.061)
2 -3.55 (0.43) 2.20 (1.30) 2.06 (1.48) —2.65 (0.34) 0.233 (0.061)
Prior 2 1 0.44 (0.07) 1.54 (0.32) ~3.63 (0.89) -0.51 (0.076) 0.777 (0.048)
2 -4.09 (0.10) 3.87 (1.39) 8.31 (2.96) —2.57 (0.294) 0.223 (0.048)
Prior 3 1 0.38 (0.10) 1.38 (0.36) —2.80 (0.73) -0.49 (0.101) 0.782 (0.055)
2 -3.88 (0.24) 2.59 (1.22) 3.47 (1.31) —2.70(0.331) 0.218 (0.055)
Prior 4 1 0.35 (0.12) 1.27 (0.36) —2.58 (0.79) -0.47 (0.086) 0.77 (0.054)
2 -3.75 (0.30) 2.49 (1.23) 2.85 (1.44) —2.65 (0.301) q®@e54)
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First, we used the skew-normal mixture model to classify each subject into one of the 2 components,5
To test how this classification is related to the genetic risk factor, we assigned the genotype labels intos
2 classes: lower riske22, e23, e33and higher risk{e24, e34, e44 Under prior 1, for instance, we
found that 84.5% of the lower risk subjects, as opposed to only 28.4% of the higher risk subjects, WereA
assigned to the component with the higher expected cognitive score. On the other hand, 71.6% of thg
higher risk subjects, but only 15.5% of the lower risk subjects, were assigned to the component with 3 s
the lower expected cognitive score. This clearly indicates consistent classification of the cognition scores\>
of the subjects based on their genetic risk factors. The genotype labels are also plotted in Figure 1 |rt§
grayscales, from the lightest to the darkest in the sequ® e23, €33, e24, e34, @44s rugplot for
visual perception of the classification.

Further, to test the classification induced by the normal mixture model with 3 components, we assigned
the genotype labels into 3 classes: reduced{ggiR, e23, normal risk{e33, €24, and increased risfe34,
ed4. We found that 26.87%, 38.06%, and 35.07%, respectively, of the higher risk subjects were classified

into the left, the middle, and the right normal components in Figure 1; the same numbers for the lower risk

uo s

subjects were 15.48%, 32.26%, and 52.26%, respectively. In contrast to the precise classification by the

2-component skew-normal mixture model, the classification by the 3-component normal mixture model
is weak, which may be attributed to the spurious splitting of 1 skewed component into 2 symmetric ones.
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4.2 Multivariate skew-t mixture modeling of flow cytometric data

A flow cytometer is an instrument that measures the expression of proteins on the surface of and within
individual cells in a given sample. Fluorescently tagged antibodies are used as markers to bind the
corresponding proteins and thus measure the amounts expressed for each cell in terms of fluorescence in-
tensities. This produces a high-throughput sample in which each cell is represented by a high-dimensional
data point where a dimension corresponds a particular marker.

Typically, a flow cytometric data analyst looks at the high-dimensional flow readout in 2D projections o
and manually identifies (or “gates”) the cell populations of interest. A flow cytometric sample is generally =
understood as a mixture of different cell populations which express in the form of immuno-phenotypic §
clusters under different conditions such as disease and control. Therefore, finite-mixture modeling ap§
proach to cluster the cell populations in terms of their protein expression provides a natural interpretaﬂ
tion to the mixture components. Moreover, it provides automation, rigor, and reproducibility in flow data 3
analysis.

Often cell populations in flow cytometric readouts suffer from considerable presence of non- Gau53|an§
characteristics, such as prominent skewness and large number of outliers. Therefore, while Gausaa@
mixture modeling is not unprecedented in flow data analysis (Boedigheimer and Ferbas, 2008; Charg
and others2008), it neither models formally the skewness in flow populations nor is robust against large &
number of outliers. Both skewness and outliers cause inaccurate inference by Gaussian mixture modeling
due to fitting more components than the true number of clusters present in the data. Given the multimodal
multidimensional, and asymmetric nature of flow cytometric cell populations, it appears to be a perfectlyU
suitable and most useful application for multivariate skefimite-mixture modeling.

In the following example, we used skawmixture modeling to do a comparative analysis of a pe-
ripheral blood sample from a subject who developed GvHD following blood and marrow transplantation &
with a control sample from a subject who underwent similar transplant but did not develop signs of the
disease. The samples were obtained from publicly available data due to the study of Brarar@thers
(2007), which may be referred to for further details. Brinknaamd otherg2007) observed an increased
proportion in the CD4+CDg8+CD3+ population to be correlated with the development of GvHD.

Recently, Loand others(2008) used an expectation-maximization-based Stuiderikture model,
with Box—Cox transformation to diminish the asymmetry of populations in the sample. Their optimal
model for the Brinkmarand otherg(2007), GvHD data had 12 components based on BIC, a count that
exceeded our optimal model (see below). In this respect, it may be noted that finding a suitable transfore
mation to adequately correct the skew in data is known to be difficult (Kruglyak and Lander, 1995), and €
thus the resulting modeling with symmettidensities could lead to inaccurate inference.

In contrast, we fit 6-variate finite mixtures of skew-normal and skalistributions over a range of
K =1,...,14 components to the case sample GvHDBO01case containing a population of 12442 cells
and the control sample GvHDBO6control containing a population of 8691 cells. For Bayesian estimation,2
we use the priors jntroduced in Section A of the supplementary material availabiesstisticsonline
with bf’ = Ogx1, by = ¥, D = D¥ = 0.1,¢0 = 5.5,g0 = 0.5,¢ = 0.5, andd = 9/(1 + +/2) for the
skewt mixtures.

Since, we expect the posterior density to have many local modes, we generated fér sacbral
independent chains, each with 10000 MCMC draws after a burn-in of 5000 draws using the MCMC
schemes described in Sections B.2 and B.3 of the supplementary material avaiBibktatisticsonline.

In fact, it turned out that the various chains converged to different modal regions of the parameter space.
For further inference we selected for each valuekgfthe chain with the smallest BIC computed as

in (3.10). This guarantees that we are dealing with posterior draws from a modal region with high poste-
rior probability because-0.5BICk is a rough estimate of the marginal likelihood of a model where the
parameters are restricted to each modal region.
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Table 4. Choosing K for the flow cytometriata

Data set GvHDBO1case Data €&¥HDBO6control

Skewi

K=8 K=9 K =10 K=7 K =8 K=9 K =10
ICL-BICk -15126.6 -17810.1 -17580.3 7651.2 6823.7 6942.7 9054.95
AWEK -12077.4 -14378.5 -13766.1 10230.3 9772.7 10261.7 12743.90
DICya,k -16757.8 -19568.9 -19898.1 5719.8 5068.2 4368.5 6315.3
Skew-normal

K=11 K =12 K =13 K=12 K =13 K =14
ICL-BICk -16050.1 —-16543.8 -15510.2 11307.5 10320.4 11793.8
AWEK -11973.6 —-12095.7 -10690.6 15609.5 14981.8 16814.6
DIC4a,k -16643.2 -17883.8 -18781.8 8369.7 7562.4 8259.87

Bold values indicate the selected number

To select the optimal number of components, various criteria introduced in Section 3.3 were com-
puted both for skew-normal and skawnixtures. Since we would like to find well-separated clusters,
ICL-BICk and DIGi,x as well as AWK are reported in Table 4. For both samples, +BICk
and AWE¢ select the same number of clusters both for skew-normal and skeixtures. For the
GvHDBOlcase sample, these criteria seléct= 9 for skewt mixtures andKk = 12 for skew-normal
mixtures. For the GvHDBO6control sample, these criteria sédeet 8 for skewt mixtures andk = 13
for skew-normal mixtures. Both criteria clearly favor the optimal skawixture model over the optimal
skew-normal mixture for both samples. Dk selects the same number of clusters as+8ICk and
AWEK only when a skew-normal mixture is fitted to the GvHDBO6control sample. In all other cases, the
number of selected clusters is higher.

The skewt mixtures selected by ICEBICk and AWE« were identified as described in Section B.4
of the supplementary material availabldBabstatisticoonline. Parameter estimates are reported in Table 5
for the case sample. We find that several components have a small degree of frgeahaithat some, but
not all, skewness parameterg; are different from 0. A similar result is obtained for the control sample
(not reported).

The MCMC draws obtained from relabeling are used for further inference as shown in the heatmap
in Figure 3. Using a totally unsupervised 6-variate skemixture modeling, the present method suc-
ceeded in discovering the signature specified by Brinkerahotherg2007) with fewer components, see
Figure 3. The case and control samples were optimally modeled with 8 and & skemponents respec-
tively, as shown in the heatmap. Each row in the heatmap represents 1 component from either sampl€
Whether a component belonged to case or control sample is marked by a pink or a green label. It |sz
likely that superior modeling by sketvmixture over symmetri¢ mixture led to a smaller number of 8
components. Among the 17 components from both samples, grouped by the similarity of their locations,,
an outstanding one marked with a rectangle (bottom row in Figure 3) represented a 3.5% cell population§
of live cells (high Forward Scatter [FSC], high Side Scatter [SSC]) in the case sample with a clear and
unigue CD4+CD@+CD3+CD8+ signature. Yet another component in the case sample of size 3.4% (fifth
row from the bottom in Figure 3) may also be considered. Both components reaffirm the same GvHD-
specific signature reported by Brinkmand otherg2007).
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5. CONCLUDING REMARKS

We studied multivariate mixtures that introduce for each component a skewness parameter of the same
dimension as the observations. A more flexible mixture could be based on more general skew-normal
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Table 5. Data set GvHDBO1case; fitted skew-t mixture with=K9 components; parametestimation

k 1 2 3 4 5 6 7 8

E(uk.1ly) 272 222 28 211 229 25 237 229 252
E(uk.2ly) 259 185 27 226 185 23 196 1.85 259
E(uk.3ly) 181 054 162 092 143 11 054 048 116
E(uk.4ly) 128 044 193 093 0295 0.95 039 142  1.09
E(uksly) 1.7 046 202 078 197 064 037 189 0091
E(uk.6ly) 146 082 293 081 095 068 143 26 0.93
E (o 1Y) -03 -226 -019 -456 048  0.08 004 -155 -5.08
SD(ak 11Y) 044 186 063 158 022  0.09 011 081 2

E (o 21Y) 027 -085 -147 055 016 04 004 084  1.02
SD(ak 21Y) 0.4 121 051 025 021  0.19 013 034 035
E(ak.3ly) -1.37 009 -1.93 007 -6.16 -0.8 001 067 -0.68
SD(ak 31y) 0.5 023 053 02 084 021 017 027 043
E(ak.4ly) -0.09 013 024 -015 002  0.28 021 -1.82 -1.05
SD(ak 41y) 028 025 033 024 022 027 016 072 054
E (o 51Y) 2.1 033 034 -032 025 -0.07 01 -0.05 -0.02
SD(ak_sly) 041 034 027 021 023 023 021 014 021
E(ak.6lY) 1.74 -018 003 007 063 -028 -481 -023 -0.1
SD(ak_sly) 0710 035 012 013 04 0.32 1.22 017 019
Med(vkly) 73 123 222 195 248 489 497 39 181
E(10074]y) 3.4 9.6 35 234 1.7 304 98 35 147

SD, standard deviation.

and skewt distributions where the univariate random effect is substituted by a higher dimensional one
(see, e.g. Branco and Dey, 2001; Arellano-Valle and Azzalini, 2006). Our MCMC scheme may be easily

extended to such a mixture.

Although our MCMC scheme is quite efficient, we see scope for improvement. Parameter expansio
similar in spirit to van Dyk and Meng (2001) could be implemented by running MCMC for an expanded

unidentified model with the random effects distributedzas~ TN [, o0) (@k, k). TO improve mixing

for multimodal posteriors in the context of clustering high-dimensional data sets ideas from evolutionary

Monte Carlo as discussed, for example, in Liang and Wong (2001) could be considered.

Finally, we end by highlighting the potential application of the robust and precise data modeling by

our method to high-throughput and high-dimensional platforms such as flow cytometry.

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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Fig. 3. Skewt mixture modeling of GvHD case and control samples from Brinkauathotherg2007) data identifies
component with unique marker signature. In the heatmap, each row represents the location of a 6D cluster from eithef.
the case or the control sample and each column represents a particular marker. Whether a component belonged to the
case or the control sample is marked by a pink or a green label. Based eiBICL_the control sample was optimally
modeled with nine 6D skew-components, and the case sample with 8 components. The red, blue, and white colors
denote high, low, and medium expression, respectively. Among all components, the one marked with a rectangl
represents live cells (high FSC, high SSC) from the case sample with a unique CDA+CD8+ signature.
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