
Biostatistics(2010),11, 2, pp.317–336
doi:10.1093/biostatistics/kxp062
Advance Access publication on January 27, 2010

Bayesian inference for finite mixtures of univariate and
multivariate skew-normal and skew-t distributions
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SUMMARY

Skew-normal and skew-t distributions have proved to be useful for capturing skewness and kurtosis in data
directly without transformation. Recently, finite mixtures of such distributions have been considered as a
more general tool for handling heterogeneous data involving asymmetric behaviors across subpopulations.
We consider such mixture models for both univariate as well as multivariate data. This allows robust
modeling of high-dimensional multimodal and asymmetric data generated by popular biotechnological
platforms such as flow cytometry.

We develop Bayesian inference based on data augmentation and Markov chain Monte Carlo (MCMC)
sampling. In addition to the latent allocations, data augmentation is based on a stochastic representation
of the skew-normal distribution in terms of a random-effects model with truncated normal random effects.
For finite mixtures of skew normals, this leads to a Gibbs sampling scheme that draws from standard
densities only. This MCMC scheme is extended to mixtures of skew-t distributions based on representing
the skew-t distribution as a scale mixture of skew normals.

As an important application of our new method, we demonstrate how it provides a new computa-
tional framework for automated analysis of high-dimensional flow cytometric data. Using multivariate
skew-normal and skew-t mixture models, we could model non-Gaussian cell populations rigorously and
directly without transformation or projection to lower dimensions.

Keywords: Flow cytometry; Gibbs sampling; Kurtosis; Markov chain Monte Carlo; Skewness; Stochastic
representation.

1. INTRODUCTION

When modeling empirical univariate or multivariate datay1, . . . , yN that exhibit multimodality, skewness,
or excess kurtosis, it is often assumed that the data are independent realizations of a random variableY
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318 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

from a finite-mixture distribution. This leads to the standard finite-mixture model considered, for example,
in McLachlan and Peel (2000) and Frühwirth-Schnatter (2006). An important special case of such a model
is a mixture of normal distributions which allows an arbitrarily close modeling of any distribution by
increasing the number of components. The flexibility, however, causes problems when such a model is
used in a clustering context because several normal distributions may be necessary to capture skewness
and kurtosis of a single cluster, thus leading to wrong inference about the number of clusters in the
data (Jasraand others, 2006). Similarly, in the context of supervised learning, groups of observations
represented by asymmetrically distributed data can lead to wrong classification.

For illustration, we show in Figure 1, the histogram of the global cognition scores of 451 patients
suffering from Alzheimer’s disease (AD). These data will be analyzed in detail in Section 4.1. The left-
hand side of Figure 1 shows the result of fitting a 3-component mixture of normal distributions which
correspond to the optimal number of components as will be demonstrated in Section 4.1. Interestingly, the
bimodality of the fitted mixture indicates the presence of 2 clusters, however, the normal mixture needs 2
components to fit the skewness present in the second cluster.

To address such practical issues formally, attention has shifted recently toward finite-mixture models
where the component densities themselves capture skewness and excess kurtosis. Applications and case
studies for modeling with skew distributions now include research areas, such as economics, finance,
climatology, environmetrics, engineering, and biomedical sciences (Genton, 2004). On the other hand, for
robustness against outliers in multimodal data, mixtures of Student-t distributions have been applied by
Peel and McLachlan (2000) and Linand others(2004) which allow for heavy tails of each component.
Very recently, application of finite-mixture models have been to the univariate skew-normal (Lin, Lee, and
Yen, 2007) and skew-t distribution (Jasraand others, 2006; Lin, Lee, and Hseih, 2007), to the univariate
skew Student-t-normal distribution (Cabraland others, 2008), and to the multivariate skew-normal (Lin,
2009) and skew-t distribution (Lin, 2010; Pyneand others, 2009).

Fig. 1. Gaussian and skew-normal mixture modeling of AD data set. The histogram, common to both plots, shows
the univariate cognition test scores of subjects in the data set. The “rugplot” common to both plots (it appears just
below thex-axis in either plot) shows each subject’s genotype. A darker point in the rug indicates more e4 alleles in
a subject’s genotype implying higher risk factor for AD. In the left-hand side plot, fitting of a 3-component Gaussian
mixture is shown. In the right-hand side plot, fitting of a 2-component skew-normal mixture is shown.
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Following this important work, we consider univariate as well as multivariate skew-normal and skew-t
distributions as defined by Azzalini (1985, 1986), Azzalini and Dalla Valle (1996), and Azzalini and Cap-
itanio (2003) as building blocks for a finite-mixture model. We apply our methodology to the (univariate)
clinical data from AD introduced above and will show that the optimal mixture of skew-normal distribu-
tions needs only 2 components to fit the observed distribution, see the right-hand side of
Figure 1. In addition, we consider clustering multivariate flow cytometric data from Graft versus Host
Disease (GvHD). Flow cytometry is a biotechnological platform commonly used in immunology, cancer
biology, and molecular biology. It is used to investigate expression of proteins on the surface and within
every cell in a given sample with fluorophore-conjugated antibodies (or markers). Currently, up to 17
markers can be measured for each of the tens to hundreds of thousands of cells per sample (Perfettoand
others, 2004), thus producing high-throughput high-dimensional data. In addition, flow cytometric data
are often multimodal, skewed, and noisy. At present, the analysis of flow cytometric data analysis, which
involves identification of cell populations, is done manually by projecting the data in 2D. Our Bayesian
mixture modeling with multivariate skew distributions can allow automatic high-dimensional clustering
to substitute the current slow and subjective manual approach to flow cytometric data analysis. As noted
above, our model also allows the asymmetry in data to be modeled directly without the need for any
transformation which might lead to imprecise inference about the number of clusters in a data set.

Although the extension from a standard to a skew finite-mixture model appears quite natural, the actual
estimation results in a complex computational problem. Subsequently, we pursue a Bayesian approach
using data augmentation and Markov chain Monte Carlo (MCMC). Toward this, we use a representation
of the skew-normal and the skew-t distribution that combines the standard hierarchical representation of a
finite-mixture model introduced in Diebolt and Robert (1994) with a stochastic representation of the skew-
normal and the skew-t distribution in terms of a random-effects model with truncated normal random
effects (Azzalini, 1986; Henze, 1986). After applying a suitable transformation of the component-specific
parameters, this leads to a straightforward MCMC sampling scheme that involves a 2-block Gibbs sampler
for finite mixtures both of univariate and multivariate skew-normal distributions. For finite mixtures of
univariate and multivariate skew-t distributions, a third block has to be added that involves a Metropolis–
Hastings step for the degrees of freedom and a Gibbs step for the latent scaling factors in the infinite-
mixture representation of the skew-t distribution.

The rest of the paper is organized as follows. Section 2 reviews skew-normal and skew-t distributions.
Section 3 introduces finite mixtures of such distributions and discusses Bayesian estimation using MCMC.
Section 4 provides applications to clustering univariate clinical data from AD and multivariate cytometric
data from GvHD.

2. SKEW-NORMAL AND SKEW-t DISTRIBUTIONS

2.1 The scalar skew-normal distribution

A univariate random variableX follows a standard skew-normal distribution with skewness parameterα,
X ∼ SN (α), if the density takes the formp(x|α) = 2φ(x)8(αx), whereφ(∙) and8(∙) are, respectively,
the probability density function (pdf) and the cumulative distribution function (cdf) of the standard normal
distribution. Evidently, forα = 0, the standard normalN (0, 1) results. Choosingα 6= 0 leads to a density
with a skewness coefficient in [−0.9953, 0.9953]. The first systematic treatment of this density has been
given by Azzalini (1985, 1986).

In our subsequent Bayesian analysis, we use the following stochastic representations of the skew-
normal distribution (Azzalini, 1986; Henze, 1986). LetZ ∼ T N [0,∞)(0, 1) andε ∼ N (0, 1), indepen-
dently, and letδ ∈ (−1, 1). The random variableX defined by

X = δZ +
√

1 − δ2ε (2.1)
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follows the standard skew-normalSN (α) distribution with skewness parameterα = δ/
√

1 − δ2. Thus,
the skew-normal distribution may be seen as the superposition of a normal random variable with a latent
truncated standard normal random effect.

The expectation and the variance ofX are given byE(X) =
√

2
π δ andV(X) = 1− 2

π δ
2. To adjust for

an arbitrary location and scale, a location parameterξ ∈ < and a scale parameterω ∈ <+ are introduced.
The random variableY = ξ + ωX, whereX ∼ SN (α), is said to follow the skew-normal distribution
SN (ξ, ω2, α). The density of this distribution reads:

fSN (y; ξ, ω2, α) =
2

ω
φ

(
y − ξ

ω

)
8(αω−1(y − ξ)). (2.2)

A stochastic representation of theSN (ξ, ω2, α) distribution is obtained by applying the affine transfor-
mationY = ξ + ωX to (2.1):

Y = ξ + ωδZ + ω
√

1 − δ2ε, (2.3)

whereZ ∼ T N [0,∞)(0, 1) andε ∼ N (0, 1), independently andδ = α/(
√

1 + α2).

2.2 The multivariate skew-normal distribution

A multivariate version of the skew-normal distribution has been defined in Azzalini and Dalla Valle (1996)
by generalizing the stochastic representation (2.1). Ther components of a multivariate random variable

X = (X1, . . . , Xr )
′
∈ <r are defined forj = 1, . . . , r asX j = δ j Z +

√
1 − δ2

j ε j , whereδ j ∈ (−1, 1),

Z ∼ T N [0,∞)(0, 1) as before, andεεε = (ε1, . . . , εr )
′
∼ Nr (0,���εεε) is independent ofZ and multivariate

normal with an arbitrary correlation matrix���εεε. Applying the affine transformationY = ξξξ + ωωωX with
location parameterξξξ = (ξ1, . . . , ξr )

′
∈ <r and diagonal scale matrixωωω = Diag(ω1, . . . , ωr ) with ω j > 0

immediately leads to the stochastic representation

Yj = ξ j + ω j δ j Z + ω j

√
1 − δ2

j ε j . (2.4)

The resulting distribution is called the basic multivariate skew-normal distribution, denoted bySN r

(ξξξ,���, ααα), with density

fSN (y; ξξξ,���, ααα) = 2φr (y − ξξξ ;���)8(ααα
′
ωωω−1(y − ξξξ)), (2.5)

whereφr (x;���) is the pdf of the multivariate zero meanNr (0,���) distribution and8(∙) is the cdf of the
univariateN (0, 1) distribution. The parametersααα and��� are related to the parametersδδδ = (δ1, . . . , δr )

′
,

ωωω and���εεε in the stochastic representation (2.4) through

��� = ωωω���ωωω, ααα =
1

√
1 − δδδ

′
δδδ
���

−1
δδδ, (2.6)

where��� = 111���εεε111 + δδδδδδ
′
and111 = Diag

(√
1 − δ2

1, . . . ,
√

1 − δ2
r

)
. Thematrix��� is a correlation matrix

because��� j j = (1 − δ2
j )(���εεε) j j + δ2

j = 1, thus��� j j = ω2
j .

Given the parameter(ξξξ,���, ααα) of a SN r (ξξξ,���, ααα) distribution, the parameters(δδδ, ωωω,���εεε) in the
stochastic representation (2.4) are obtained from

δδδ =
1

√
1 + ααα

′
���ααα

���ααα, ���εεε = 111−1���111−1 − α̃ααα̃αα
′
, (2.7)
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where��� = ωωω−1���ωωω−1 with ωωω = Diag(���)1/2 being a diagonal matrix obtained from the diagonal elements

of ���, α̃αα = (α̃1, . . . , α̃r )
′
with α̃ j = δ j /

√
1 − δ2

j and111 is the same as above. The marginal distribution of

Yj is equal to the scalar skew normalSN (ξ j , ω
2
j , α̃ j ), hence,

E(Y) = ξξξ + ωωωδδδ

√
2

π
. (2.8)

For alternative ways of constructing multivariate skew-normal distributions, see Arellano-Valle and
Azzalini (2006).

2.3 Skew-t distributions

The kurtosis coefficient of a skew-normal distribution is restricted to the interval [3, 3.8692]. To achieve
a higher degree of excess kurtosis, skew-t distributions have been introduced by Azzalini and Capitanio
(2003). A univariate random variableY follows the scalar skew-t distribution,Y ∼ ST (ξ, ω2, α, ν), if it
has the following stochastic representation:

Y = ξ + ω
X

√
W
, (2.9)

whereX ∼ SN (α) andW ∼ G
(
ν
2,

ν
2

)
, independently. The Gamma distributionG(a, b) is defined with

densityp(y|a, b) = baya−1e−by/0(a). The pdf ofY reads:

fST (y; ξ, ω2, α, ν) =
2

ω
tν(xy)Tν+1

(

αxy

√
ν + 1

ν + x2
y

)

, (2.10)

wherexy = (y − ξ)/ω and tν andTν denote, respectively, the pdf and the cdf of a standard Student-t
distribution withν degrees of freedom. A random variableY taking values in<r follows the multivariate
skew-t distribution,Y ∼ ST r (ξξξ,���, ααα, ν), if it has the following stochastic representation:

Y = ξξξ +
1

√
W

X, (2.11)

whereX ∼ SN r (0,���, ααα) andW ∼ G
(
ν
2,

ν
2

)
, independently. The pdf ofY reads:

fST (y; ξξξ,���, ααα, ν) = 2 ftr (y; ξξξ,���, ν)Tν+r

(

ααα
′
ωωω−1(y − ξξξ)

√
ν + r

ν + Qy

)

, (2.12)

whereωωω = Diag(���)1/2, Qy = (y − ξξξ)
′
���−1(y − ξξξ), ftr (y; ξξξ,���, ν) denotes the pdf of the multivariate

Student-t distributiontr (ξξξ,���, ν), andTν denotes the cdf of the scalar standard Student-t distribution as
above. The skew-t distribution converges to the skew-normal distribution asν → ∞. For anyr > 1, the
expectation of the skew-t distribution, provided thatν > 1, is given by

E(Y) = ξξξ + ωωωμμμX, μμμX = δδδ

√
ν

π

0((ν − 1)/2)

0(ν/2)
. (2.13)

3. SKEW-NORMAL AND SKEW-t FINITE-MIXTURE MODELS

We consider univariate and multivariate finite-mixture models where the component densitiesp(yi |θθθk),
k = 1, . . . , K , arise either from a skew-normal or a skew-t distribution with component-specific
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322 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

parameterθθθk. The marginal distribution takes the form of a finite-mixture distribution with weightsηηη =
(η1, . . . , ηK ) where

∑K
k=1 ηk = 1, for example, for a mixture of scalar skew-normal distributions:

p(yi |θθθ1, . . . , θθθK , ηηη) = η1 fSN (yi ; ξ1, ω
2
1, α1)+ ∙ ∙ ∙ + ηK fSN (yi ; ξK , ω

2
K , αK ) (3.1)

or for a mixture of multivariate skew-t distributions:

p(yi |θθθ1, . . . , θθθK , ηηη) = η1 fST (yi ; ξξξ1,���1, ααα1, ν1)+ ∙ ∙ ∙ + ηK fST (yi ; ξξξ K ,���K , αααK , νK ).

Although this extension appears quite natural, the estimation of such a finite-mixture model results in a
complex computational problem. In our subsequent Bayesian analysis, we combine the stochastic rep-
resentations of the skew-normal and the skew-t distribution discussed in Section 2 with the standard
hierarchical representation of a finite-mixture model in terms of a sequence of latent allocations. This
leads to a straightforward MCMC sampling scheme.

3.1 Finite mixture of random-effects model representation

Like any other finite-mixture model, mixtures of skew-normal or skew-t distributions may be regarded
as hierarchical latent variable models, where the distribution of the observationsy = (y1, . . . , yN) is
specified conditional on latent allocationsS = (S1, . . . , SN):

p(y|S, θθθ1, . . . , θθθK ) =
N∏

i =1

p(yi |Si , θθθ1, . . . , θθθK ) =
N∏

i =1

p(yi |θθθSi ),

where Pr(Si = k|ηηη) = ηk, k = 1, . . . , K andS1, . . . , SN are mutually independent. Conditional onSi ,
the distribution underlyingp(yi |θθθSi ) is represented as in Section 2 as a random-effects model. Thus, we
obtain a representation of skew-normal or skew-t mixtures in terms of finite mixtures of random-effects
models with truncated normal random effects.

For scalar skew-normal mixtures as defined in (3.1), the application of (2.3) to each component density
leads to the following representation fori = 1, . . . , N,

zi ∼ T N [0,∞)(0, 1),

yi |(Si = k) = ξk + ωkδkzi + ωk

√
1 − δ2

kεi , εi ∼ N (0, 1),

wherez1, . . . , zN andε1, . . . , εN are mutually independent. To implement our Bayesian approach, we
introduce a new parameterization in terms of the component-specific parametersθθθ?k = (ξk, ψk, σ

2
k ), where

ψk = ωkδk andσ 2
k = ω2

k(1 − δ2
k):

zi ∼ T N [0,∞)(0, 1),

yi |(Si = k) = ξk + ψkzi + εi , εi ∼ N (0, σ 2
k ). (3.2)

The original parameterθθθk = (ξk, ω
2
k, αk) is recovered through

αk =
ψk

σk
, ω2

k = σ 2
k + ψ2

k (3.3)

becauseψk/σk = ωkδk/
(
ωk

√
1 − δ2

k

)
= αk andσ 2

k + ψ2
k = ω2

k(1 − δ2
k)+ ω2

kδ
2
k = ω2

k.
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Representation (3.2) offers several advantages. First, a conditionally conjugate prior forθθθ?k = (ξk, ψk,
σ 2

k ) is available and, second, straightforward estimation using a 2-block Gibbs sampler becomes fea-
sible, see Section 3.2. A related representation with random-effects distributionzi ∼ T N [0,∞)(0, ω2

k)

has been used in Lin, Lee, and Yen (2007), however,ξk, ω2
k, andδk are sampled in different blocks and

a Metropolis–Hastings algorithm is needed to sampleδ1, . . . , δK , while representation (3.2) allows to
sample all component-specific parameters jointly from a closed-form posterior.

A similar representation is available for mixtures of multivariate skew-normal distributionsSN r (ξξξk,
���k, αααk), k = 1, . . . , K , where the componentwise application of (2.4) leads to a mixture of random-
effects models with repeated measurements and a univariate truncated normal random effect:

zi ∼ T N [0,∞)(0, 1),

yi |(Si = k) = ξξξk + ψψψkzi + εεεi , εεε i ∼ Nr (0, 666k), (3.4)

with z1, . . . , zN and εεε1, . . . , εεεN being mutually independent. We introduced the parameterization
θθθ?k = (ξξξk, ψψψk, 666k), as we did for scalar skew-normal mixtures, whereψψψk = (ψk1, . . . , ψkr )

′
with

ψk j = ωk jδk j and666k = ���k−ψψψkψψψ
′

k. The form of666k results from (2.7):666k = ωωωk111k(���εεε)k111kωωωk = ���k−

ωωωk111kα̃ααk(ωωωk111kα̃ααk)
′
. The matrix111kα̃ααk is a diagonal matrix with(111kα̃ααk) j j =

√
1 − δ2

k jδk j/
√

1 − δ2
k j =

δk j , thereforeωωωk111kα̃ααk = ψψψk. The original parameterθθθk = (ξξξk,���k, αααk) is recovered from

���k = 666k + ψψψkψψψ
′

k, αααk =
1

√
1 − ψψψ

′

k���
−1
k ψψψk

ωωωk���
−1
k ψψψk. (3.5)

For skew-t mixtures, we combine the stochastic representations (2.9) or (2.11) with the random-effects
representation of the skew-normal distribution. For a finite mixture of scalar skew-t distributionsST (ξk,
ω2

k, αk, νk), k = 1, . . . , K , this yields

wi |(Si = k) ∼ G
(νk

2
,
νk

2

)
, (3.6)

zi |wi ∼ T N [0,∞)

(
0,

1

wi

)
, (3.7)

yi |(Si = k, wi ) = ξk + ψkzi + εi , εi ∼ N (0, σ 2
k /wi ), (3.8)

wherew1, . . . , wN are mutually independent as arez1, . . . , zN and ε1, . . . , εN given w1, . . . , wN . A
finite mixture of multivariate skew-t distributionsST r (ξξξk,���k, αααk, νk), k = 1, . . . , K , has a similar
representation with a repeated measurements observation equation:

yi |(Si = k, wi ) = ξξξk + ψψψkzi + εεε i , εεε i ∼ Nr

(
0,

1

wi
666k

)
, (3.9)

wherez1, . . . , zN andεεε1, . . . , εεεN are mutually independent givenw1, . . . , wN . The variance of the trun-
cated normal random effectzi depends on the latent scaling factorwi which results from multiplying in
(3.2) or (3.4) aT N [0,∞)(0, 1) random variable with 1/

√
wi .

As for skew-normal mixtures, we use an alternative parameterization with component-specific
parameterθθθ?k = (ξk, ψk, σ

2
k , νk) and θθθ?k = (ξξξk, ψψψk, 666k, νk), respectively. This allows Bayesian esti-

mation through a 3-block MCMC sampler where only sampling of the degrees of freedom parameters
ν1, . . . , νK requires a Metropolis–Hastings step.
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324 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

3.2 Bayesian estimation

To perform a Bayesian analysis, we first have to select a prior for the weight distributionηηη and the
component-specific parameters. It should be noted that, in general, the prior distribution has to be selected
carefully in the context of finite-mixture models. First of all, it is not possible to choose an improper prior
because this leads to an improper posterior density (see, e.g. Frühwirth-Schnatter, 2006, Section 3.2).
Furthermore, as noted by Jennison (1997), one should avoid trying to be as “noninformative as possible”
by choosing large prior variances because the choice of the prior of the parameters strongly affects the
posterior of the number of componentsK which will be considered in Section 3.3 for selectingK . For
this reason, we extend the hierarchical priors introduced by Richardson and Green (1997, Section 2.4) in
the context of mixtures of normals and by Stephens (1997) in the context of mixtures oft-distributions to
skew-normal and skew-t mixtures. Such hierarchical priors are known to reduce sensitivity with respect
to choosing the prior variances.

Concerning the weight distribution, we apply the commonly used Dirichlet distributionηηη ∼ D(e0,
. . . , e0). Nobile (2004) showed that the parametere0 exercises considerable influence on the posterior
distribution of K because this parameter strongly affects the link between the marginal likelihoods of
finite-mixture models withK − 1 andK components. Fr̈uhwirth-Schnatter (2006, Section 5.3.2) demon-
strated that this link is reduced considerably by selectinge0 larger thane0 = 1, which is the value com-
monly used in the literature.

Concerning the component-specific parameters, we specify priors for the transformed parameters
θθθ?1, . . . , θθθ

?
K introduced in Section 3.1 rather than directly forθθθ1, . . . , θθθK . Using the representations dis-

cussed in Section 3.1, conditionally conjugate priors taking the form of normal–gamma distributions are
available for all transformed component-specific parameters except the degrees of freedom parameters
ν1, . . . , νK . The prior onνk is a slight modification of a prior introduced by Juárez and Steel (2010) for
Student-t mixtures withν1 = ∙ ∙ ∙ = νK . Further details for all priors are provided in Section A of the
supplementary material available atBiostatisticsonline.

Following the seminal paper by Diebolt and Robert (1994), the most popular method for Bayesian
estimation of finite mixtures is to apply MCMC methods (see Frühwirth-Schnatter, 2006, Section 3.5, for
an extensive review). This approach is extended to skew-normal and skew-t mixtures using the represen-
tations introduced in Section 3.1. We introduce the latent allocationsS = (S1, . . . , SN) and the latent
random effectsz = (z1, . . . , zN) as missing data and add the latent scaling factorsw = (w1, . . . , wN) for
skew-t mixtures. MCMC sampling is based on the following observations.

First, as for more conventional finite-mixture models, it is possible to sample the allocationsS given
the component-specific parametersθθθ?1, . . . , θθθ

?
K and the weightsηηη = (η1, . . . , ηK ) without conditioning

on the other latent variablesz (andw) because the component densities are available in closed form, see
Section 2.

Second, conditional onS (andw), we consider skew-normal and skew-t mixtures as random-effects
models with a normal observation equation and a truncated normal random effect. A nice property of such
a model is that the full conditional of the random effectzi given the observationyi is available in closed
form, see Section B.1 of the supplementary material available atBiostatisticsonline. This allows joint
multi-move sampling of the latent variablesS andz.

Third, conditional onS, z, (andw) sampling of the transformed component specific parametersθθθ?1, . . . ,
θθθ?K (except the degrees of freedom) reduces to Bayesian inference for a finite mixture of regression models
with known allocations. For each groupk, (ξξξ ′

k ψψψ
′
k)

′
is a regression coefficient and666k is an error covari-

ance matrix in a regression model with a conditionally conjugate prior, allowing joint sampling ofξξξk,ψψψk,
and666k from a closed-form posterior distribution.

As a result, MCMC estimation for skew-normal mixtures is possible through a 2-step Gibbs sampler
if all hyperparameters are fixed:

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/11/2/317/268224 by guest on 13 M

arch 2024



Bayesian inference for univariate and multivariate skew-normal and skew-t mixtures 325

(a) Sampleθθθ?1, . . . , θθθ
?
K andηηη conditional onz, S, andy.

(b) Samplez andS jointly conditional onθθθ?1, . . . , θθθ
?
K , ηηη, andy.

All conditional densities are of closed form, see Section B.2 of the supplementary material available
at Biostatisticsonline, which also contains details on sampling under a hierarchical prior. For MCMC
estimation of skew-t mixtures, a third step has to be added:

(a) Sampleθθθ?1, . . . , θθθ
?
K (exceptν1, . . . , νK ) andηηη conditional onz, S, w, andy.

(b) Samplez andS jointly conditional onθθθ?1, . . . , θθθ
?
K , ηηη, w, andy.

(c) Sampleν1, . . . , νK andw conditional ony and the remaining parameters.

All conditional densities exceptp(ν1, . . . , νK |∙) are of closed form, see Section B.3 of the supplementary
material available atBiostatisticsonline for details.

Like for any finite-mixture model, a nonidentifiability problem is present because the labeling of the
components in the mixture density may be changed without changing the likelihoodp(y|ϑϑϑ), see, for
example, (3.1). This might cause label switching during MCMC sampling which makes it difficult to
estimate component-specific parameters from the MCMC output. Various methods have been suggested
in the literature do deal with this problem, (see, e.g. Celeuxand others, 2000; Stephens, 2000; Jasraand
others, 2005). Here, we follow Fr̈uhwirth-Schnatter (2001) who suggested to add a random permutation
step to the MCMC scheme and to postprocess the resulting MCMC output to identify component-specific
parameters, see Section B.4 of the supplementary material available atBiostatisticsonline for more details.

3.3 Selecting the number of components

Selecting the number of components of a finite-mixture model is a challenge (see Frühwirth-Schnatter,
2006, Chapter 5, for a recent review). Popular methods implement reversible jump MCMC, compute
marginal likelihoods, or use model choice criteria.

Reversible jump MCMC was introduced by Richardson and Green (1997) to select the number of
components for univariate mixtures of normal distributions. This method is based on creating a Markov
chain that moves between finite mixtures with different number of components while retaining detailed
balance that ensures the correct limiting distribution. Those moves have to be based on carefully selected
degenerate proposal densities. The design of suitable proposals for higher-dimensional mixtures is quite a
challenge, see, for example, Dellaportas and Papageorgiou (2006) for multivariate normal mixtures. Since
adding skewness even complicates matters, we did not pursue reversible jump MCMC.

Alternatively, the choice ofK may be based on the posterior probabilityp(MK |y) of a finite-mixture
modelMK with K components, given byp(MK |y) ∝ p(y|MK )p(MK ), where p(y|MK ) is the
marginal likelihood andp(MK ) is the prior probability ofMK , for instance, a truncated Poisson
distribution (see, e.g. Nobile, 2004).

Also the computation of the marginal likelihoodp(y|MK ) turns out to be challenging for skew-
normal and skew-t mixtures. For moderateK , sayK 6 5, we follow Fr̈uhwirth-Schnatter (2004) who
demonstrates that the technique of bridge sampling (Meng and Wong, 1996) is a useful method of com-
puting the marginal likelihood of a finite-mixture model and is superior to alternative sampling-based
approaches such as importance sampling (Neal, 2001). Like importance sampling, bridge sampling is
based on an i.i.d. sample from an importance density, however, this sample is combined with the MCMC
draws from the posterior density in an appropriate way. An important advantage of bridge sampling over
importance sampling is that the variance of the resulting estimator depends on a ratio that is bounded
regardless of the tail behavior of the underlying importance density.

For larger values ofK , all simulation-based estimators including bridge sampling turned out to be
unstable. For such mixtures, model choice criteria may be considered. One such criterion is the Bayesian
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326 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

information criterion (BICK ) that is an asymptotic approximation to−2 log p(y|MK ):

BICK = −2 log p(y|ϑ̂ϑϑK ,MK )+ dK log N, (3.10)

wheredK = (2r +1)K −1+ Kr (r +1)/2 = dN
K for skew-normal mixtures anddK = dN

K + K for skew-t

mixtures.ϑ̂ϑϑK is an approximate maximum likelihood (ML) estimator ofϑϑϑK = (θθθ1, . . . , θθθK , ηηη) obtained
by maximizing the log of the observed-data likelihood function logp(y|ϑϑϑK ,MK ) over the MCMC draws.
If the distribution family underlying the component densities is correctly specified, then BICK is known
to be consistent (Keribin, 2000), although in small data sets, it tends to choose models with too few
components (Biernackiand others, 2000). On the other hand, simulation studies reported in Biernacki
and Govaert (1997), Biernackiand others(2000), and McLachlan and Peel (2000, Section 6.11) show
that BICK will overrate the number of clusters under misspecification of the component density, whereas
several alternative criteria such as the approximate weight of evidence (AWEK ) and the integrated classifi-
cation likelihood (ICLK ) criterion to be discussed below are able to identify the correct number of clusters
even when the component densities are misspecified. Thus, BICK for clustering large data sets, where the
component densities of the finite-mixture model may not be correctly specified, is likely to be imprecise.

AWEK is derived in Banfield and Raftery (1993) as another approximation to minus twice the log of
the marginal likelihood. AWEK is described in Biernacki and Govaert (1997) as a criterion that penalizes
the log of the complete-data likelihood function with model complexity:

AWEK = −2 log p(y, Ŝ|ϑ̂ϑϑ
C
K )+ 2dK

(
3

2
+ log N

)
, (3.11)

whereϑ̂ϑϑ
C
K andŜ are determined jointly as that combination of parameters and allocations that maximize

the log of the complete-data likelihood logp(y,S|ϑϑϑK ) =
∑N

i =1 log(ηSi p(yi |θθθSi )). ϑ̂ϑϑ
C
K is approximated

by the posterior draw maximizing the complete-data likelihood function.
Biernackiand others(2000) introduced the ICLK that has been shown by McLachlan and Peel (2000,

p. 216) to be approximately equal to

ICL−BICK = BICK + 2EN(ϑ̂ϑϑK ). (3.12)

EN(ϑϑϑK ) is the entropy defined by

EN(ϑϑϑK ) = −
N∑

i =1

K∑

k=1

Pr(Si = k|yi , ϑϑϑK )log Pr(Si = k|yi , ϑϑϑK )

and measures how well the finite-mixture model defined byϑϑϑK classifies the data intoK distinct clusters.
Thus, the ICL−BICK criterion penalizes not only model complexity but also the failure of the model to
provide a classification into well-separated clusters.

Recently, the deviance information criterion (DIC) introduced by Spiegelhalterand others(2002) be-
came a popular criterion for Bayesian model selection because it is easily computed from the MCMC
draws. However, the application of DIC to finite-mixture models is not without problems as discussed
recently by Celeuxand others(2006). A first problem is the choice of the appropriate likelihood func-
tion that could either be the observed-data likelihood function logp(y|ϑϑϑK ), the complete-data likelihood
function log p(y,S|ϑϑϑK ), or the conditional likelihoodp(y|S, ϑϑϑK ). Second, the calculation of DIC re-
quires an estimator of the unknown parameterϑϑϑK which may suffer from label switching as discussed
above, making DIC unstable. Finally, DIC involving the complete-data or the conditional likelihood re-
quires some way of handling the problem thatS is unobserved, either by integrating with respect to the
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posteriorp(S|y,MK ) or by using an estimator ofS where once more the label switching problem has to
be addressed.

In reaction to these difficulties, Celeuxand others(2006) investigate in total 8 different DIC crite-
ria. DIC2, for instance, focuses on the marginal distribution of the data and considers the allocations as
nuisance parameters. Consequently, it is based on the observed-data likelihood:

DIC2,K = −4EϑϑϑK (log p(y|ϑϑϑK )|y)+ 2 log p(y|ϑ̂ϑϑ
M
K , y), (3.13)

where the posterior mode estimatorϑ̂ϑϑ
M
K which is invariant to label switching is obtained from the observed-

data posteriorp(ϑϑϑK |y,MK ).
Based on several simulation studies, Celeuxand others(2006) recommend using DIC4 which is based

on computing first DIC for the complete-data likelihood function and then integrating with respect to the
posteriorp(S|y,MK ):

DIC4,K = −4EϑϑϑK ,S(log p(y,S|ϑϑϑK )|y)+ 2ES(log p(y,S|ϑ̂ϑϑK (S))|y). (3.14)

The application of this criterion requires the computation of the complete-data estimatorϑ̂ϑϑK (S) for each
draw from the posteriorp(S|y,MK ) which is straightforward only for simple mixture models, where the
complete-data posteriorp(θθθk|y,S) is of closed form. However, this is not the case for the class of skew
finite mixtures. Celeuxand others(2006) show that substitutinĝϑϑϑK (S) by the posterior mode estimator

ϑ̂ϑϑ
M
K , an approximation to DIC4,K is obtained which penalizes DIC2,K by the expected entropy:

DIC4a,K = DIC2,K + 2EϑϑϑK (EN(ϑϑϑK )|y). (3.15)

For skew finite mixtures, both DIC2,K as well as DIC4a,K are easily estimated from the MCMC draws
from the posteriorp(ϑϑϑK |y,MK ) by substituting all expectationsEϑϑϑK (∙|y) by the average over the
MCMC draws. Note that the label switching is not a problem here because both logp(y|ϑϑϑK ) as well
as EN(ϑϑϑK ) are invariant to changing the labeling of the groups.

4. APPLICATIONS

When the observations in a study generate asymmetric data, even moderately imprecise models could lead
to erroneous classification of the subjects. As shown in the following examples, we address this problem
with the help of precise skew mixture modeling.

4.1 Skew-normal mixture modeling of Alzheimer’s disease data

AD is a complex disease that has multiple genetic as well as environmental risk factors. It is commonly
characterized by loss of a wide range of cognitive abilities with aging. For the present analysis, the data
set consists of 451 subjects from the cohorts of the Religious Orders Study, see Wilsonand others(2004)
and the Memory and Aging Project, see Bennettand others(2005). The level of cognition of the subjects
was clinically evaluated proximate to their death based on tests of cognitive functions and summarized
by a mean global cognition score, with higher scores suggesting better cognition capabilities. The genetic
risk factor Apolipoprotein E (ApoE) polymorphism was determined by genotyping the DNA from the
subjects’ blood.

Since the distribution of global cognition scores appeared to be skewed, see again Figure 1, we applied
skew-normal and skew-t mixture models withK = 1, . . . , 4 components. Bayesian analysis is based on
the priors introduced in Section A of the supplementary material available atBiostatisticsonline with
different sets of hyper parameters. For all priors,bψ0 = bξ0 = 0 andg0 = 0.5, while we consider 4
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328 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

Table 1. Choosing the hyper parameters Dξ , Dψ , c0, and φ of the prior in skew-normal and skew-t
mixture modeling of AD data set; R2 = 1−φ/(c0−1) is the prior expectation of explained heterogeneity;

d is an additional hyperparameter for skew-t mixtures

Dξ = Dψ c0 φ R2 d Median ofνk

Prior 1 0.1 2.5 0.5 2/3 9/(1 +
√

2) 10
Prior 2 0.01 2.5 0.5 2/3 9/(1 +

√
2) 10

Prior 3 0.1 5 4/3 2/3 9/(1 +
√

2) 10
Prior 4 0.1 2.5 1 1/3 9/(1 +

√
2) 10

Prior 5 0.1 2.5 0.5 2/3 4/(1 +
√

2) 5

different settings forDξ = Dψ , c0, andφ and 2 different values ford for skew-t mixtures, see Table 1
for details. Compared to the other priors, prior 2 introduces considerably smaller prior information for
the location parameterξ and the skewness parameterψ , prior 3 introduces stronger smoothing for the
group specific variancesσ 2

1 , . . . , σ
2
K , and prior 4 assumes a smaller prior expectation of the heterogeneity

explained by differences in the group locations. Prior 5 applies only to skew-t mixtures and reduces the
prior median ofνk by 50% compared to the other priors.

For eachK and each prior, we generate 50 000 MCMC draws after a burn-in of 10 000 draws by
using the MCMC schemes described in Sections B.2 and B.3 of the supplementary material available at
Biostatisticsonline.

To select the optimalK , marginal likelihoodsp(y|MK ) are computed for each prior as described in
Section 3.3 and are combined with a truncatedP(2)-prior for K . The resulting (nonnormalized) posterior
probabilities log(p(y|MK )p(MK )) are reported in Table 2. The same table reports BICK and DIC2,K
for the various priors. Although BICK is independent from the prior, differences in the estimated values of
BICK occur caused by random fluctuations of the approximate ML estimator across MCMC runs. Table 2
reports the smallest BICK among all MCMC runs. Table 2 does not report the remaining criteria intro-
duced in Section 3.3 because, regardless of the prior, AWEK , ICL−BICK , as well as DIC4a,K selected a
model withK = 1 which, however, contradicts common knowledge of AD classification.

For skew-normal mixtures, both the marginal likelihood as well as BICK select a model with 2 com-
ponents for all priors considered. In contrast to that, DIC2,K shows high sensitivity to prior choices and
the selected number of components ranges from 2 to 4. For skew-t mixtures, we find that BICK favors
a 2-component mixture, however, this model is outperformed by the 2-component skew-normal mixture.
In contrast to skew-normal mixtures, model selection based on marginal likelihoods is sensitive to prior
choices. Under prior 1 and prior 5, the marginal likelihood rejects skew-t mixtures in favor of a single
skew-t distribution. For prior 2 and prior 4,K = 2 is selected, while prior 3 leads to choosingK = 3.
Upon comparison of all models, we find a preference for a skew-normal mixture with 2 components for all
priors. For skew-t mixtures, sensitivity of DIC2,K to prior choices is even higher and the selected number
of components ranges from 1 to 4.

For comparison, we also fitted finite mixtures of normal distributions where the priors are selected
similarly as in Richardson and Green (1997). The marginal likelihoods are computed as in Frühwirth-
Schnatter (2004) andp(MK ) is the same as above. The (nonnormalized) posterior probabilities
log(p(y|MK )p(MK )) together with BICK and DIC2,K are reported in Table 2. The first 2 criteria select
a normal mixture with 3 components, while DIC2,K leads to choosingK = 4.

When the 3-component normal mixture is compared with the 2-component skew-normal mixture, the
latter one is preferred by the marginal likelihood and BICK , regardless of the prior. Figure 1 shows that
the fitted density is practically the same for both finite mixtures. While one of the clusters is comparable
for both mixtures (see the leftmost cluster in the left-hand and the right-hand side of Figure 1), the normal
mixture needs 2 components to fit the skewness in the second cluster.
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Table 2. Selecting the number K of components in Gaussian and skew-normal and skew-t mixture
modeling of AD dataset

K
Skew-normal mixtures 1 2 3 4

BICK 1376.25 1363.13 1385.29 1404.09

log(p(y|MK )p(MK )) Prior 1 –690.11 –684.28 –686.97 –692.80
Prior 2 –690.88 –682.68 –688.74 –697.69
Prior 3 –690.80 –683.79 –685.94 –691.60
Prior 4 –691.16 –683.89 –686.48 –692.87

DIC2,K Prior 1 1363.98 1345.40 1345.89 1344.68
Prior 2 1363.81 1335.14 1337.65 1335.24
Prior 3 1363.94 1340.54 1335.23 1351.47
Prior 4 1364.10 1343.33 1346.66 1351.14

Skew-t mixtures 1 2 3 4

BICK 1382.32 1375.76 1406.15 1436.53

log(p(y|MK )p(MK )) Prior 1 –690.65 –695.38 –692.89 –698.74
Prior 2 –693.48 –687.82 –692.00 –700.87
Prior 3 –693.20 –698.49 –692.43 –696.77
Prior 4 –693.58 –691.77 –693.25 –698.12
Prior 5 –693.55 –696.95 –696.93 –700.47

DIC2,K Prior 1 1363.48 1369.19 1359.07 1350.87
Prior 2 1363.73 1341.41 1340.78 1343.30
Prior 3 1364.23 1375.39 1344.26 1347.87
Prior 4 1364.53 1372.33 1355.57 1354.62
Prior 5 1364.87 1388.21 1378.25 1367.83

Normal mixtures 1 2 3 4

BICK 1473.93 1371.69 1369.09 1378.97
log(p(y|MK )p(MK )) –740.70 –686.87 −685.83 –686.30
DIC2,K 1465.70 1350.60 1354.37 1345.76

Bold values indicate the selected numberK .

The 2-component skew-normal mixture is identified for each prior as described in Section B.4 of the
supplementary material available atBiostatisticsonline. Figure 2 shows the resulting posterior draws ofα1
andα2 for prior 1. The estimated parameters are reported for all priors in Table 3. Evidently, the skewness
parameterαk is sensitive to selecting the prior informationDξ andDψ which is much smaller under prior
2 than for the other priors. On the other hand, the expected cognitive scoreμk and the group sizesηk are
insensitive to prior choices. For all priors, the first component has a much higher expected cognitive score
μk than the second one and exhibit considerable negative skewness. The skewness parameterαk is positive
for the second component, however, strongly depends on the prior and exhibits very large standard errors.

Among the genetic risk factors for AD, the pivotal role of ApoE gene is well established (Wilson
and others, 2002; Roses, 1997). There are 3 different allele polymorphisms of the gene in general
population—e2, e3, and e4—and the number of copies of e4 is linked to increased risk of early onset
of the disease. Hence, an individual with the homozygous alleles e44 (i.e. both alleles are e4) carries
greater risk than one with heterozygous e34 (i.e. an e3 and an e4); the latter, in turn, has greater risk than
e24 (which however has normal risk similar to e33) as those with e2 alleles have reduced risk of early
onset of AD.
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330 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

Fig. 2. Two-component skew-normal mixture modeling of AD data set. Posterior draws obtained under prior 1 for the
skewness parametersα1 (left-hand side) andα2 (right-hand side) after identification.

Table 3. Two-component skew-normal mixture modeling of AD data set. Parameter estimation under
different priors using posterior means (posterior standard deviations in parenthesis)

k ξk ω2
k αk μk = E(Y|Si = k) ηk

Prior 1 1 0.36 (0.11) 1.26 (0.37) –2.61 (0.78) –0.46 (0.096) 0.767 (0.061)
2 –3.55 (0.43) 2.20 (1.30) 2.06 (1.48) –2.65 (0.34) 0.233 (0.061)

Prior 2 1 0.44 (0.07) 1.54 (0.32) –3.63 (0.89) –0.51 (0.076) 0.777 (0.048)
2 –4.09 (0.10) 3.87 (1.39) 8.31 (2.96) –2.57 (0.294) 0.223 (0.048)

Prior 3 1 0.38 (0.10) 1.38 (0.36) –2.80 (0.73) –0.49 (0.101) 0.782 (0.055)
2 –3.88 (0.24) 2.59 (1.22) 3.47 (1.31) –2.70 (0.331) 0.218 (0.055)

Prior 4 1 0.35 (0.12) 1.27 (0.36) –2.58 (0.79) –0.47 (0.086) 0.77 (0.054)
2 –3.75 (0.30) 2.49 (1.23) 2.85 (1.44) –2.65 (0.301) 0.23(0.054)

First, we used the skew-normal mixture model to classify each subject into one of the 2 components.
To test how this classification is related to the genetic risk factor, we assigned the genotype labels into
2 classes: lower risk{e22, e23, e33} and higher risk{e24, e34, e44}. Under prior 1, for instance, we
found that 84.5% of the lower risk subjects, as opposed to only 28.4% of the higher risk subjects, were
assigned to the component with the higher expected cognitive score. On the other hand, 71.6% of the
higher risk subjects, but only 15.5% of the lower risk subjects, were assigned to the component with
the lower expected cognitive score. This clearly indicates consistent classification of the cognition scores
of the subjects based on their genetic risk factors. The genotype labels are also plotted in Figure 1 in
grayscales, from the lightest to the darkest in the sequence{e22, e23, e33, e24, e34, e44}, as rugplot for
visual perception of the classification.

Further, to test the classification induced by the normal mixture model with 3 components, we assigned
the genotype labels into 3 classes: reduced risk{e22, e23}, normal risk{e33, e24}, and increased risk{e34,
e44}. We found that 26.87%, 38.06%, and 35.07%, respectively, of the higher risk subjects were classified
into the left, the middle, and the right normal components in Figure 1; the same numbers for the lower risk
subjects were 15.48%, 32.26%, and 52.26%, respectively. In contrast to the precise classification by the
2-component skew-normal mixture model, the classification by the 3-component normal mixture model
is weak, which may be attributed to the spurious splitting of 1 skewed component into 2 symmetric ones.
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4.2 Multivariate skew-t mixture modeling of flow cytometric data

A flow cytometer is an instrument that measures the expression of proteins on the surface of and within
individual cells in a given sample. Fluorescently tagged antibodies are used as markers to bind the
corresponding proteins and thus measure the amounts expressed for each cell in terms of fluorescence in-
tensities. This produces a high-throughput sample in which each cell is represented by a high-dimensional
data point where a dimension corresponds a particular marker.

Typically, a flow cytometric data analyst looks at the high-dimensional flow readout in 2D projections
and manually identifies (or “gates”) the cell populations of interest. A flow cytometric sample is generally
understood as a mixture of different cell populations which express in the form of immuno-phenotypic
clusters under different conditions such as disease and control. Therefore, finite-mixture modeling ap-
proach to cluster the cell populations in terms of their protein expression provides a natural interpreta-
tion to the mixture components. Moreover, it provides automation, rigor, and reproducibility in flow data
analysis.

Often cell populations in flow cytometric readouts suffer from considerable presence of non-Gaussian
characteristics, such as prominent skewness and large number of outliers. Therefore, while Gaussian
mixture modeling is not unprecedented in flow data analysis (Boedigheimer and Ferbas, 2008; Chan
and others, 2008), it neither models formally the skewness in flow populations nor is robust against large
number of outliers. Both skewness and outliers cause inaccurate inference by Gaussian mixture modeling
due to fitting more components than the true number of clusters present in the data. Given the multimodal,
multidimensional, and asymmetric nature of flow cytometric cell populations, it appears to be a perfectly
suitable and most useful application for multivariate skew-t finite-mixture modeling.

In the following example, we used skew-t mixture modeling to do a comparative analysis of a pe-
ripheral blood sample from a subject who developed GvHD following blood and marrow transplantation
with a control sample from a subject who underwent similar transplant but did not develop signs of the
disease. The samples were obtained from publicly available data due to the study of Brinkmanand others
(2007), which may be referred to for further details. Brinkmanand others(2007) observed an increased
proportion in the CD4+CD8β+CD3+ population to be correlated with the development of GvHD.

Recently, Loand others(2008) used an expectation-maximization-based Student-t mixture model,
with Box–Cox transformation to diminish the asymmetry of populations in the sample. Their optimal
model for the Brinkmanand others(2007), GvHD data had 12 components based on BIC, a count that
exceeded our optimal model (see below). In this respect, it may be noted that finding a suitable transfor-
mation to adequately correct the skew in data is known to be difficult (Kruglyak and Lander, 1995), and
thus the resulting modeling with symmetrict densities could lead to inaccurate inference.

In contrast, we fit 6-variate finite mixtures of skew-normal and skew-t distributions over a range of
K = 1, . . . , 14 components to the case sample GvHDB01case containing a population of 12 442 cells
and the control sample GvHDB06control containing a population of 8691 cells. For Bayesian estimation,
we use the priors introduced in Section A of the supplementary material available atBiostatisticsonline
with bψ0 = 06×1, bξ0 = y, Dξ = Dψ = 0.1,c0 = 5.5, g0 = 0.5,φ = 0.5, andd = 9/(1 +

√
2) for the

skew-t mixtures.
Since, we expect the posterior density to have many local modes, we generated for eachK several

independent chains, each with 10 000 MCMC draws after a burn-in of 5000 draws using the MCMC
schemes described in Sections B.2 and B.3 of the supplementary material available atBiostatisticsonline.
In fact, it turned out that the various chains converged to different modal regions of the parameter space.
For further inference we selected for each value ofK , the chain with the smallest BICK , computed as
in (3.10). This guarantees that we are dealing with posterior draws from a modal region with high poste-
rior probability because−0.5BICK is a rough estimate of the marginal likelihood of a model where the
parameters are restricted to each modal region.
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Table 4. Choosing K for the flow cytometricdata

Data set GvHDB01case Data setGvHDB06control

Skew-t
K = 8 K = 9 K = 10 K = 7 K = 8 K = 9 K = 10

ICL−BICK –15126.6 –17810.1 –17580.3 7651.2 6823.7 6942.7 9054.95
AWEK –12077.4 –14378.5 –13766.1 10230.3 9772.7 10261.7 12743.90
DIC4a,K –16757.8 –19568.9 –19898.1 5719.8 5068.2 4368.5 6315.3

Skew-normal
K = 11 K = 12 K = 13 K = 12 K = 13 K = 14

ICL-BICK –16050.1 –16543.8 –15510.2 11307.5 10320.4 11793.8
AWEK –11973.6 –12095.7 –10690.6 15609.5 14981.8 16814.6
DIC4a,K –16643.2 –17883.8 –18781.8 8369.7 7562.4 8259.87

Bold values indicate the selected numberK .

To select the optimal number of components, various criteria introduced in Section 3.3 were com-
puted both for skew-normal and skew-t mixtures. Since we would like to find well-separated clusters,
ICL−BICK and DIC4a,K as well as AWEK are reported in Table 4. For both samples, ICL−BICK

and AWEK select the same number of clusters both for skew-normal and skew-t mixtures. For the
GvHDB01case sample, these criteria selectK = 9 for skew-t mixtures andK = 12 for skew-normal
mixtures. For the GvHDB06control sample, these criteria selectK = 8 for skew-t mixtures andK = 13
for skew-normal mixtures. Both criteria clearly favor the optimal skew-t mixture model over the optimal
skew-normal mixture for both samples. DIC4a,K selects the same number of clusters as ICL−BICK and
AWEK only when a skew-normal mixture is fitted to the GvHDB06control sample. In all other cases, the
number of selected clusters is higher.

The skew-t mixtures selected by ICL−BICK and AWEK were identified as described in Section B.4
of the supplementary material available atBiostatisticsonline. Parameter estimates are reported in Table 5
for the case sample. We find that several components have a small degree of freedomνk and that some, but
not all, skewness parametersαk, j are different from 0. A similar result is obtained for the control sample
(not reported).

The MCMC draws obtained from relabeling are used for further inference as shown in the heatmap
in Figure 3. Using a totally unsupervised 6-variate skew-t mixture modeling, the present method suc-
ceeded in discovering the signature specified by Brinkmanand others(2007) with fewer components, see
Figure 3. The case and control samples were optimally modeled with 8 and 9 skew-t components respec-
tively, as shown in the heatmap. Each row in the heatmap represents 1 component from either sample.
Whether a component belonged to case or control sample is marked by a pink or a green label. It is
likely that superior modeling by skew-t mixture over symmetrict mixture led to a smaller number of
components. Among the 17 components from both samples, grouped by the similarity of their locations,
an outstanding one marked with a rectangle (bottom row in Figure 3) represented a 3.5% cell population
of live cells (high Forward Scatter [FSC], high Side Scatter [SSC]) in the case sample with a clear and
unique CD4+CD8β+CD3+CD8+ signature. Yet another component in the case sample of size 3.4% (fifth
row from the bottom in Figure 3) may also be considered. Both components reaffirm the same GvHD-
specific signature reported by Brinkmanand others(2007).

5. CONCLUDING REMARKS

We studied multivariate mixtures that introduce for each component a skewness parameter of the same
dimension as the observations. A more flexible mixture could be based on more general skew-normal
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Table 5. Data set GvHDB01case; fitted skew-t mixture with K= 9 components; parameterestimation

k 1 2 3 4 5 6 7 8 9

E(μk,1|y) 2.72 2.22 2.8 2.11 2.29 2.5 2.37 2.29 2.52
E(μk,2|y) 2.59 1.85 2.7 2.26 1.85 2.3 1.96 1.85 2.59
E(μk,3|y) 1.81 0.54 1.62 0.92 1.43 1.1 0.54 0.48 1.16
E(μk,4|y) 1.28 0.44 1.93 0.93 0.295 0.95 0.39 1.42 1.09
E(μk,5|y) 1.7 0.46 2.02 0.78 1.97 0.64 0.37 1.89 0.91
E(μk,6|y) 1.46 0.82 2.93 0.81 0.95 0.68 1.43 2.6 0.93

E(αk,1|y) –0.3 –2.26 –0.19 –4.56 0.48 0.08 0.04 –1.55 –5.08
SD(αk,1|y) 0.44 1.86 0.63 1.58 0.22 0.09 0.11 0.81 2

E(αk,2|y) 0.27 –0.85 –1.47 0.55 0.16 0.4 0.04 0.84 1.02
SD(αk,2|y) 0.4 1.21 0.51 0.25 0.21 0.19 0.13 0.34 0.35

E(αk,3|y) –1.37 0.09 –1.93 0.07 –6.16 –0.8 –0.01 0.67 –0.68
SD(αk,3|y) 0.5 0.23 0.53 0.2 0.84 0.21 0.17 0.27 0.43

E(αk,4|y) –0.09 0.13 0.24 –0.15 0.02 0.28 0.21 –1.82 –1.05
SD(αk,4|y) 0.28 0.25 0.33 0.24 0.22 0.27 0.16 0.72 0.54

E(αk,5|y) –2.1 0.33 0.34 –0.32 0.25 –0.07 0.1 –0.05 –0.02
SD(αk,5|y) 0.41 0.34 0.27 0.21 0.23 0.23 0.21 0.14 0.21

E(αk,6|y) 1.74 –0.18 0.03 0.07 0.63 –0.28 –4.81 –0.23 –0.1
SD(αk,6|y) 0.71 0.35 0.12 0.13 0.4 0.32 1.22 0.17 0.19

Med(νk|y) 7.3 12.3 22.2 19.5 24.8 48.9 497 3.9 18.1

E(100ηk|y) 3.4 9.6 3.5 23.4 1.7 30.4 9.8 3.5 14.7
SD, standard deviation.

and skew-t distributions where the univariate random effect is substituted by a higher dimensional one
(see, e.g. Branco and Dey, 2001; Arellano-Valle and Azzalini, 2006). Our MCMC scheme may be easily
extended to such a mixture.

Although our MCMC scheme is quite efficient, we see scope for improvement. Parameter expansion
similar in spirit to van Dyk and Meng (2001) could be implemented by running MCMC for an expanded,
unidentified model with the random effects distributed aszi ∼ T N [αk,∞)(αk, βk). To improve mixing
for multimodal posteriors in the context of clustering high-dimensional data sets ideas from evolutionary
Monte Carlo as discussed, for example, in Liang and Wong (2001) could be considered.

Finally, we end by highlighting the potential application of the robust and precise data modeling by
our method to high-throughput and high-dimensional platforms such as flow cytometry.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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Fig. 3. Skew-t mixture modeling of GvHD case and control samples from Brinkmanand others(2007) data identifies
component with unique marker signature. In the heatmap, each row represents the location of a 6D cluster from either
the case or the control sample and each column represents a particular marker. Whether a component belonged to the
case or the control sample is marked by a pink or a green label. Based on ICL−BIC, the control sample was optimally
modeled with nine 6D skew-t components, and the case sample with 8 components. The red, blue, and white colors
denote high, low, and medium expression, respectively. Among all components, the one marked with a rectangle
represents live cells (high FSC, high SSC) from the case sample with a unique CD4+CD8β+CD3+ signature.
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336 S. FRÜHWIRTH-SCHNATTER AND S. PYNE

LIN, T. I. (2010). Robust mixture modeling using multivariate skewt distributions.Statistics and Computing(in
press).

L IN, T. I., LEE, J. C.AND HSIEH, W. J. (2007). Robust mixture modeling using the skewt-distribution.Statistics
and Computing17, 81–92.

LIN, T. I., LEE, J. C. AND NI, H. F. (2004). Bayesian analysis of mixture modelling using the multivariate
t-distribution.Statistics and Computing14, 119–130.

LIN, T. I., LEE, J. C.AND YEN, S. Y. (2007). Finite mixture modelling using the skew normal distribution.Statistica
Sinica17, 909–927.

LO, K., BRINKMAN , R. R.AND GOTTARDO, R. (2008). Automated gating of flow cytometry data via robust model-
based clustering.Cytometry Part A73, 321–332.

MCLACHLAN , G. J.AND PEEL, D. (2000).Finite Mixture Models. Wiley Series in Probability and Statistics. New
York: Wiley.

MENG, X.-L. AND WONG, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: a theo-
retical exploration.Statistica Sinica6, 831–860.

NEAL, R. N. (2001). Annealed importance sampling.Statistics and Computing11, 125–139.

NOBILE, A. (2004). On the posterior distribution of the number of components in a finite mixture.The Annals of
Statistics32, 2044–2073.

PEEL, D. AND MCLACHLAN , G. (2000). Robust mixture modelling using thet distribution. Statistics and
Computing10, 339–348.

PERFETTO, S. P., CHATTOPADHYAY, P. K. AND ROEDERER, M. (2004). Seventeen-colour flow cytometry: unrav-
elling the immune system.Nature Reviews Immunology4, 648–655.

PYNE, S., HU, X., WANG, K., ROSSIN, E., LIN, T., MAIER, L. M., BAECHER-ALLAN , C., MCLACHLAN , G. J.,
TAMAYO , P., HAFLER, D. A. and others(2009). Automated high-dimensional flow cytometric data analysis.
Proceedings of National Academy of Sciences of the United States of America106, 8519–8524.

RICHARDSON, S. AND GREEN, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of compo-
nents.Journal of the Royal Statistical Society, Series B59, 731–792.

ROSES, A. D. (1997). A model for susceptibility polymorphisms for complex diseases: apolipoprotein E and
Alzheimer disease.Neurogenetics1, 3–11.

SPIEGELHALTER, D. J., BEST, N. G., CARLIN , B. P. AND VAN DER LINDE, A. (2002). Bayesian measures of
model complexity and fit.Journal of the Royal Statistical Society, Series B64, 583–639.

STEPHENS, M. (1997). Bayesian methods for mixtures of normal distributions, [PhD. Thesis]. University of Oxford,
Oxford.

STEPHENS, M. (2000). Dealing with label switching in mixture models.Journal of the Royal Statistical Society,
Series B62, 795–809.

VAN DYK , D. AND MENG, X.-L. (2001). The art of data augmentation.Journal of Computational and Graphical
Statistics10, 1–50.

WILSON, R., BIENIAS, J., EVANS, D. AND BENNETT, D. (2004). The religious orders study: overview and change
in cognitive and motor speed.Aging, Neuropsychology, and Cognition11, 280–303.

WILSON, R., SCHNEIDER, J., BARNES, L., BECKETT, L., AGGARWAL, N., COCHRAN, E., BERRY-KRAVIS, E.,
BACH, J., FOX, J., EVANS, D. and others(2002). The apolipoprotein E e4 allele and decline in different cognitive
systems during a 6-year period.Archives of Neurology59, 1154–1160.

[Received December 23, 2009; revised December 23, 2009; accepted for publication December 24, 2009]

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/11/2/317/268224 by guest on 13 M

arch 2024


