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SUMMARY

When estimating the association between an exposure and outcome, a simple approach to quantifying the
amount of confounding by a factor,Z, is to compare estimates of the exposure–outcome association with
and without adjustment forZ. This approach is widely believed to be problematic due to the nonlinearity
of some exposure-effect measures. When the expected value of the outcome is modeled as a nonlinear
function of the exposure, the adjusted and unadjusted exposure effects can differ even in the absence of
confounding (Greenland, Robins, and Pearl, 1999); we call this the nonlinearity effect. In this paper, we
propose a corrected measure of confounding that does not include the nonlinearity effect. The perfor-
mances of the simple and corrected estimates of confounding are assessed in simulations and illustrated
using a study of risk factors for low birth–weight infants. We conclude that the simple estimate of con-
founding is adequate or even preferred in settings where the nonlinearity effect is very small. In settings
with a sizable nonlinearity effect, the corrected estimate of confounding has improved performance.
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1. INTRODUCTION

Confounding is a perpetual challenge in epidemiological research. Assessing the amount of confound-
ing is important for determining whether or not a specific factor should be statistically adjusted in the
analysis. In addition, reporting the amount of confounding by a particular factor can aid in interpreting
unadjusted associations reported in other studies. As an example, consider the association between ma-
ternal uterine irritability and the incidence of low birth–weight infants. Smoking is a possible confounder,
being a known risk factor for low-birth weight and also a potential contributor to uterine irritability. A
simple approach to quantifying confounding by smoking would be to compare odds ratios relating uterine
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irritability and low-birth weight with and without adjustment for smoking, that is, conditional and marginal
odds ratios (see e.g.Breslow and Day, 1980; Kleinbaumand others, 1982). We call this the simple ap-
proach to quantifying confounding. Many have cautioned against this approach, pointing out that con-
ditional and marginal effect measures can differ absent confounding, and that confounding can occur
even when conditional and marginal effect measures are equal (Miettinen and Cook, 1981; Greenland and
Robins, 1986; Wickramaratne and Holford, 1987; Greenland, Robins, and Pearl, 1999; Greenland and
Morgenstern, 2001). This situation can occur when the measure of exposure effect is nonlinear.

In this paper, we develop a statistical framework that distinguishes the magnitude of confounding
from the size of the nonlinearity effect. We show that the simple measure of confounding combines the
true confounding bias with the magnitude of the nonlinearity effect. We develop a corrected measure of
confounding and associated methods for estimation and inference. Using simulations, we compare the
performance of the simple and corrected estimates of confounding. We find that, in scenarios where the
nonlinearity effect is very small, the simple estimate of confounding is adequate or even preferred. With
a sizeable nonlinearity effect, the corrected estimate of confounding yields improved performance.

2. STATISTICAL FRAMEWORK

We define confounding bias using the potential outcomes framework ofNeyman(1923) andRubin(1974,
1978) as discussed byGreenland, Robins, and Pearl(1999), Greenland and Morgenstern(2001), andMal-
donado and Greenland(2002). Let X denote the observed binary exposure andYobsthe observed outcome.
The methods are generalized to a continuous exposure in Section 1 of the supplementary material avail-
able atBiostatisticsonline. Denote byY(1) andY(0) the potential outcomes with and without exposure.
That is,Y(0) is the outcome that would be observed if a subject was not exposed, andY(1) is the outcome
that would be observed if the subject was exposed. Our interest lies in estimating the causal effect of
exposure on the outcome among a set of exposed subjects(X = 1). We compare the outcomes for the
exposed subjects with their expected outcomes had they not been exposed using

T = g(E(Y(1)|X = 1), E(Y(0)|X = 1)), (2.1)

whereg is a measure of the exposure effect such as a log relative risk or log odds ratio.T is defined
as the causal exposure effect among the exposed (Greenland, Robins, and Pearl, 1999; Greenland and
Morgenstern, 2001; Hernan, 2004; Hernan and Robins, 2006). This is a sensible measure of exposure
effect for harmful exposures. Section3 of the supplementary material available atBiostatisticsonline
extends the approach to other measures of causal exposure effect.

3. QUANTIFYING CONFOUNDING

The causal exposure effect defined in (2.1) is not directly observable. Specifically,E(Y(1)|X = 1) =
E(Yobs|X = 1) is observable butE(Y(0)|X = 1) is not. Suppose that we have data for a population of
unexposed individuals to serve as a reference. Let

Tm = g(E(Y(1)|X = 1), E(Y(0)|X = 0)) (3.1)

be the marginal exposure effect utilizing the reference population. Note thatTm depends only on observ-
able quantities sinceE(Y(1)|X = 1) = E(Yobs|X = 1) and E(Y(0)|X = 0) = E(Yobs|X = 0). As
in Greenland, Robins, and Pearl(1999), Greenland and Morgenstern(2001), andMaldonado and Green-
land (2002), we define confounding as any difference between the causal exposure effect (T) and the
marginal exposure effect (Tm). Confounding is then a consequence of factors other than exposure that
differ between the unexposed and exposed groups.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/11/3/572/257096 by guest on 10 April 2024
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Consider one or more covariates,Z, that explain the confounding or difference between exposed and
unexposed groups. In other words, assume that the potential outcomeY(0) is independent of exposure
given Z so that, within strata ofZ, those exposed have the same distribution ofY(0) as those unexposed.
Under this assumptionE(Y(0)|X = 1, Z) = E(Y(0)|X = 0, Z), and the causal exposure effectT can be
rewritten as

T = g

(
E(Y(1)|X = 1),

∫
E(Y(0)|X = 1, Z)dFZ|X=1(z)

)

= g

(
E(Y(1)|X = 1),

∫
E(Y(0)|X = 0, Z)dFZ|X=1(z)

)

= g

(
E(Yobs|X = 1),

∫
E(Yobs|X = 0, Z)dFZ|X=1(z)

)
. (3.2)

Note that all the quantities in (3.2) are now directly observable. In addition, expression (3.2) shows that
the causal exposure effect is obtained by reweighting the unexposed observations with respect to the
distribution ofZ in the exposed population.

The magnitude of confounding bias can thus be written as

1 ≡ T − Tm = g

(
E(Yobs|X = 1),

∫
E(Yobs|X = 0, Z)dFZ|X=1(z)

)

−g
(

E(Yobs|X = 1), E(Yobs|X = 0)
)

. (3.3)

Observe that (3.3) reduces to zero if the distribution ofZ is the same in the exposed and unexposed
populations. This occurs, for example, when the 2 populations are matched with respect toZ.

Given a random sample of exposed and unexposed individuals, we estimate the magnitude of con-
founding (1 = T − Tm) in 2 different ways. We utilize estimators of the causal exposure effect (T)
described byHernan and Robins(2006) andSato and Matsuyama(2003). With the first approach, the
quantities in (3.3) are estimated directly:

1̂st = g

(
Ê(Yobs|X = 1),

∫
Ê(Yobs|X = 0, Z)dF̂Z|X=1(z)

)

− g
(

Ê(Yobs|X = 1), Ê(Yobs|X = 0)
)

, (3.4)

where Ê(Yobs|X = 1), Ê(Yobs|X = 0), and F̂Z|X=1 are empirical estimates and̂E(Yobs|X = 0, Z) is
obtained from a binary regression model. FollowingHernan and Robins(2006) andSato and Matsuyama
(2003), we refer to this as the standardization estimator of1. Bootstrapping is used for inference.

For the second estimation approach, note thatE(Y(0)|X = 1) is equivalent to

E
(

I [X = 0]Y(0) P(X=1|Z)
P(X=0|Z)

)

E
(

I [X = 0] P(X=1|Z)
P(X=0|Z)

)

which is an inverse probability weighted (IPW) mean with weightsP(X = 1|Z)/P(X = 0|Z) (Hernan
and Robins, 2006). Hence,T can be estimated by

T̂ = g



Ê(Yobs|X = 1),

∑n
i =1 I [Xi = 0]Yi

P̂(X=1|Zi )

1−P̂(X=1|Zi )
∑n

i =1 I [Xi = 0] P̂(X=1|Zi )

1−P̂(X=1|Zi )



 , (3.5)
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whereE(Yobs|X = 1) is estimated empirically andP(X = 1|Z) is estimated by using a binary regression
model such as logistic regression (Hernan and Robins, 2006; Hernan, 2004; Sato and Matsuyama, 2003).
Subtracting from this the estimated marginal exposure effect (T̂m) yields the IPW estimate of confounding
bias,

1̂IPW = g



Ê(Yobs|X = 1),

∑n
i =1 I [Xi = 0] Yi

P̂(X=1|Zi )

1−P̂(X=1|Zi )
∑n

i =1 I [Xi = 0] P̂(X=1|Zi )

1−P̂(X=1|Zi )





− g
(

Ê(Yobs|X = 1), Ê(Yobs|X = 0)
)

. (3.6)

We note that for discreteZ, the standardization and IPW estimates of1 are the same (̂1st = 1̂IPW) but
they differ otherwise (Hernan and Robins, 2006). Bootstrapping is used for inference for its flexibility,
although asymptotic variance expressions could also be used (Robins, 1998, 1999).

4. QUANTIFYING THE NONLINEARITY OF THE EXPOSURE EFFECT

The potential outcomes framework also provides a simple definition of the nonlinearity effect. Consider
the causal effect of exposure,X, on the outcome,Y, conditional on the covariate,Z:

Tc = g(E(Y(1)|X = 1, Z), E(Y(0)|X = 1, Z)). (4.1)

As indicated by the notation, to isolate the issue of confounding, we assume thatZ is not an effect mod-
ifier, in other words thatTc is constant across the levels ofZ. We say that a measure of associationg
incorporates a nonlinearity effect overZ if the conditional exposure effect (Tc) differs from the causal
exposure effect (T). Observe that the nonlinearity effect is not due to confounding byZ; by definition
neitherT nor Tc are confounded byZ.

Neither the rate difference nor the log relative risk incorporate nonlinearity effects, but the log odds
ratio does.Neuhausand others(1991) considered nonlinearity effects in the context of marginal and
random-effects logistic models for correlated binary data; in our settingZ behaves as the random effect.
They show that for the log odds ratio,|Tc| > |T |, and

Tc − T ≈ βx
Var(pz)

E(pz)E(qz)
(4.2)

for the logistic regression model:log oddsE(Y|X, Z) = β0 + βx X + βzZ, where log oddspz = β0 + βzZ
andqz = 1 − pz. In other words, the size of the nonlinearity effect depends on the effects ofX andZ on
Y and on the variance ofZ.

The simple approach to quantifying confounding contrasts conditional and marginal effect measures
(Tc − Tm). In the epidemiologic literature, a measure for whichTc 6= Tm is not “strictly collapsible”
(Greenland, Robins, and Pearl, 1999; Greenland and Morgenstern, 2001). The differenceTc−Tm includes
both bias due to confounding and the nonlinearity effect. To see this, we write

Tc − Tm = (T − Tm) + (Tc − T). (4.3)

The first component (T −Tm = 1) is confounding bias. The second component (Tc−T = 1nl) is the size
of the nonlinearity effect. As discussed above, the second component reduces to zero wheng is the risk
difference or log relative risk but not wheng is the log odds ratio. Therefore, when the log odds ratio is
the parameter of interest,Tc − Tm is generally an inaccurate measure of confounding because it includes
the nonlinearity effect. In Section 5, we compare the properties of the simple measure of confounding
(Tc−Tm) and the corrected measure of confounding (T −Tm) when the parameter of interest is a log odds
ratio.
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5. SIMULATION STUDIES

We consider the logistic model for a binary outcome and a binary exposure. The continuous exposure
case is discussed in Section 1 of the supplementary material. Three estimates of confounding bias are
compared in terms of bias and variability: the simple estimate,

1̂si ≡ T̂c − T̂m, (5.1)

which includes the nonlinearity effect, and 2 estimates of the corrected measure of confounding that do
not include the nonlinearity effect, the standardization estimate (3.4) and the IPW estimate (3.6).

We simulate 5000 data sets with 1000 exposed and 1000 unexposed subjects under the following
model:

Z|X ∼ N(α0 + α1X, 1),

log oddsE(Y|X, Z) = β0 + β1X + β2Z, (5.2)

with β0 = −3, α0 = 0, and a modest conditional exposure effect, eβ1 = 2.0. The parametersα1 andβ2
are varied to explore different scenarios. We consider the causal log odds ratio,T , the confounding bias
1 = T − Tm, and the size of the nonlinearity effect,1nl = Tc − T .

Each scenario is displayed graphically using a plot ofE(Y|X, Z) versusZ, for each value ofX (see
Table1). These plots visually display the size of the exposure effect, the amount of confounding, and the
size of the nonlinearity effect. The length of the lines is governed by the interquartile range ofZ|X, and the
dot on each line is at the marginal meanE(Z|X). The vertical separation between the lines forX = 0 and
X = 1 displays the size of the conditional exposure effect. The horizontal separation between the lines is
due to differences in theZ-distribution between exposed and unexposed populations, and thus represents
the amount of confounding. Finally, the curvature of the lines measures the degree of nonlinearity of
E(Y|X, Z) as function ofZ and therefore captures the nonlinearity effect.

The performances of the estimators of confounding bias are displayed in Table1. When there is
negligible confounding and nonlinearity effect (both<1% of the size of the exposure effect; Scenarios
A and B), the standardization and IPW estimators tend to be less biased but more variable than the simple
estimator. As the amount of confounding bias increases (holding the nonlinearity effect under 1% of the
size of the exposure effect; Scenarios C, D, and E), the simple and corrected estimates are all relatively
unbiased, but the corrected estimates are substantially more variable. Note that the IPW estimator, in
particular, performs poorly when theZ–X association is strong (Scenarios D and E), asP(X = 1|X) is
close to 0 or 1 and the weights are extreme. When there is a large nonlinearity effect (>25% of the size of
the exposure effect) but negligible confounding bias (<7% of the size of the exposure effect; Scenarios G
and H), the simple estimator is substantially biased, and the corrected estimators are relatively unbiased
and less variable. Finally when there is large confounding bias (>30% of the size of the exposure effect;
Scenarios I, J, and K), adding a nonlinearity effect makes the simple estimator biased; the corrected
estimators are relatively unbiased but tend to be more variable.

The approximation ofNeuhausand others(1991) given in (4.2) is also used to estimate the nonlinear-
ity effect in each scenario (Table1). This approximation produces a reasonably unbiased estimate of the
nonlinearity effect and can be used as a simple diagnostic to determine whether the nonlinearity effect is
large enough to merit using a bias-corrected estimate of confounding.

We conclude that in scenarios with very small nonlinearity effects, the simple estimate of confounding
bias, obtained by contrasting coefficients for the risk factor of interest from regression models with and
without the confounders, is appropriate. Correcting for the small amount of bias comes at too high a cost
in terms of extra variability. On the other hand, in circumstances where the nonlinearity effect is sizeable,
the corrected estimates of confounding are less biased. But the reduction in bias may be associated with
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Table 1. 5000simulations under model(5.2) to evaluate the performance of the3 estimates of confound-
ing bias for a binary exposure. In each scenario, E(Y|X, Z) is plotted against Z for each value of X. In
all scenarios,eβ1 = 2.0. The meanNeuhaus and others(1991) estimate of the nonlinearity effect is also

shown

Scenario T 1 × 10 1nl × 10 Mean×10 Var× 100 Mean×10

1̂si 1̂st 1̂IPW 1̂si 1̂st 1̂IPW 1̂nl

0.69 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.01 <0.01

0.69 −0.05 <0.01 −0.05 −0.05 −0.05 0.01 0.03 0.03 <0.01

0.69 −0.25 <0.01 −0.25 −0.25 −0.22 0.19 0.57 0.65 <0.01

0.69 −0.50 <0.01 −0.50 −0.50 −0.34 0.76 2.27 3.65 <0.01

0.69 −1.00 <0.01 −1.01 −0.98 0.73 2.96 9.05 36.01 <0.01

0.68 −0.05 0.12 0.08 −0.05 −0.05 0.06 0.06 0.05 0.12

0.55 −0.11 1.43 1.22 −0.12 −0.12 0.53 0.43 0.30 1.33
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Table 1.Continued.

Scenario T 1 × 10 1nl × 10 Mean×10 Var× 100 Mean×10

1̂si 1̂st 1̂IPW 1̂si 1̂st 1̂IPW 1̂nl

0.26 −0.16 4.27 4.38 −0.17 −0.18 1.76 0.66 0.48 4.30

0.68 −2.46 0.15 −2.32 −2.46 −2.44 0.18 0.53 0.59 0.13

0.52 −5.94 1.70 −4.25 −5.96 −5.96 0.47 0.51 0.50 1.50

0.25 −7.51 4.89 −3.10 −7.53 −7.54 1.63 0.59 0.50 4.40

a confounding estimate with increased variability. By varying the size of the conditional exposure effect
we find similar conclusions.

6. DATA ANALYSIS EXAMPLE

In this section, we use the data from a 1986 cohort study conducted at the Baystate Medical Center,
Springfield Massachusetts (Hosmer and Lemeshow, 2000) to illustrate the various approaches to quanti-
fying confounding. The study was designed to identify risk factors associated with giving birth to a low
birth–weight baby (weighing less than 2500 grams). Data were collected on 189 pregnant women, 59 of
whom had low birth–weight infants. We study the effect of uterine irritability (yes/no) on low-birth weight.
Smoking status during pregnancy (yes/no) is a possible confounder. Smoking is well known to increase
the risk of low-birth weight and may also be a contributor to uterine irritability. There is no significant
evidence that smoking modifies the effect of uterine irritability on low-birth weight (p= 0.57, Wald test;
see Table2).

We estimate confounding by smoking using the standardization estimator (3.4); the IPW estimator
is identical because the confounder is discrete. The components of (3.4) are estimated empirically, and
confidence intervals are based on quantiles of distributions of estimates across 1000 bootstrap samples.

The estimates of confounding and nonlinearity effect are shown in Table3. With the standardization
estimator, we calculate that the confounding due to smoking in the marginal log odds ratio is1̂ = −0.07
(95% CI: −0.27 to 0.09). Since e0.07 = 1.07, this implies that confounding by smoking magnifies the
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Table 2. Low birth–weight study: uterine irritability, smoking, and low birth–weightstatus

Maternal uterine Low birth–weight infant
irritability

No Yes

Nonsmoking mother
No 78 22
Yes 8 7

Smoking mother
No 38 23
Yes 6 7

Table 3. Estimates of confounding bias (1) and nonlinearity effect (1nl) in the low birth–weight study.
Smoking confounds the log odds ratio relating uterine irritability and low birth–weight. Simple(5.1)
and standardization(3.4) estimates are shown along with95%CI based on bootstrap resampling.IPW

estimates are identical to the standardizationestimates

1̂ (CI) 1̂nl (CI)

Simple −0.03 (−0.21, 0.14) —
Standardization −0.07 (−0.27, 0.09) 0.03 (−0.02,0.12)

marginal odds ratio by 7% (95% CI: 9% attenuation to 31% magnification). The estimated marginal
odds ratio confounded by smoking is 2.58 (95% CI: 1.07–5.89), while the estimated marginal odds ratio
unconfounded by smoking is 2.41 (95% CI: 1.01–5.50).

Compare this to the simple estimate of confounding, defined as the difference in log odds ratios from
logistic regression models with and without smoking status. We estimate that confounding by smoking
magnifies the odds ratio by 3% (95% CI: 13% attenuation to 24% magnification). This is a slight un-
derestimate of the magnitude of confounding; it includes both bias due to confounding and the effect of
nonlinearity of the odds ratio. The nonlinearity effect is relatively small; we estimate that the conditional
odds ratio is 3% larger than the marginal odds ratio, absent confounding by smoking (95% CI: 2% smaller
to 13% larger).

When estimating confounding using the standardization estimator versus the simple estimator, we
see that there is a slight increase in variability. This is consistent with what we saw in the simulations.
In Scenarios F and I, where the nonlinearity effects are of comparable size, the corrected estimates of
confounding are less biased and have similar or slightly more variability than the simple confounding
estimate.

7. DISCUSSION

Much of the epidemiologic literature places an emphasis on the distinction between confounding bias and
nonlinearity in the measure of exposure effect (Miettinen and Cook, 1981; Greenland and Robins, 1986;
Wickramaratne and Holford, 1987; Greenland, Robins, and Pearl, 1999; Greenland and Morgenstern,
2001). The simple approach to quantifying confounding, by contrasting the conditional and marginal ef-
fect estimates, is not advocated. Statistical methods have been developed to compare conditional
and marginal effect estimates (Hausman, 1978; Whittemore, 1978; Greenland and Maldonado, 1994;
Ducharme and Lepage, 1986; Greenland and Mickey, 1988; Hoffmannand others, 2008), but as we have
seen this contrast includes both bias due to confounding and the magnitude of the nonlinearity effect. In
this paper, we propose a corrected approach that separates confounding bias from nonlinearity effect. We
develop estimates of both the true confounding bias and the magnitude of the nonlinearity effect.
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Under a linear or log-linear model, there is no nonlinearity effect and therefore the simple estimate
of confounding defined in (5.1) is unbiased. Under a logistic model, the simple measure can be biased.
Using simulations, we explored the performance of the corrected estimates of confounding. Section1 of
the supplementary material available atBiostatisticsonline extends these simulations to the continuous
exposure case. We found that when there is a sizeable nonlinearity effect, the corrected estimate of con-
founding is preferred. The classic examples of nonlinearity effects in the literature are such scenarios.
For instance, the example shown in Table1 of Greenland, Robins, and Pearl(1999) has no confounding
(1 = 0) and a very large nonlinearity effect (1nl = 0.17; 21% of the size of the exposure effect); here
the corrected estimate of confounding is warranted. However, when the nonlinearity effect is small, the
simple estimate of confounding is appropriate since correcting for the small linearity effect incurs a cost
of extra variability in the estimate of confounding. The estimate of the nonlinearity effect based on the
approximation ofNeuhausand others(1991) can be used as a simple diagnostic to determine whether
separating confounding and the nonlinearity effect is warranted.

The approach presented here can be generalized. First, it can be used to quantify confounding due to
one factor over and above known confounders. We extend the methods to this setting in the Section 2 of
the supplementary material available atBiostatisticsonline. Second, we have used the causal exposure
effect among exposed individuals as the basis for the approach to quantifying confounding. The methods
can easily be extended to settings where the exposure effect among the total population is of interest, as
shown in Section 3 of the supplementary material available atBiostatisticsonline.

Care should be taken to determine whether it is appropriate to condition on a variable in any given data
analysis. Causal diagrams are useful tools for identifying confounders for conditioning (Pearl, 1995, 2000;
Greenland , Pearl, and Robins, 1999). They provide a general framework for identifying the variables that
should be conditioned on to avoid bias due to confounding or selection bias. Causal diagrams can also
be used to identify variables that should not be conditioned on. For example, a more detailed treatment is
required of a variable that is an intermediate step between exposure and disease (Robins, 1989; Robins and
Greenland, 1992). Conditioning on “collider variables,” which are affected by both exposure and outcome,
can actually create bias (Greenland, 2003). However, causal diagrams do not provide information about
the magnitude of bias due to lack of conditioning. This is the focus of our work: given a confounder, we
propose an approach to quantify the bias resulting from it.

Our approach assumes that the confounders have been measured. There is, however, a large literature
on methods for quantifying confounding due to unmeasured factors. Sensitivity analyses make assump-
tions about the behavior of the unmeasured confounders, calculate the associated bias, and then vary the
assumed values over a range to assess the potential magnitude of confounding (see e.g.Cornfieldand
others, 1959; Gail and others, 1988; Rosenbaum 2002). Alternatively, a probabilistic approach can be
used wherein a distribution is assumed for the unknown parameters and incorporated into the measure of
confounding bias (see e.g.Lash and Silliman, 2000; Greenland, 2001, 2003, 2005; Phillips, 2003).

We have assumed throughout that there is no effect modification. WhenZ modifies the exposure effect,
primary interest lies in the conditional exposure effectTc(Z) as it varies withZ. However, an overall
exposure effect may also be obtained by averaging the conditional effects. For nonlinear exposure–effect
measures, the average conditional exposure effectT∗ =

∫
Tc(Z)dG(Z), whereG is an arbitrary measure,

will differ from the marginal exposure effectTm. This is also called noncollapsibility of the exposure
effect (Greenland, Robins, and Pearl, 1999; Greenland and Morgenstern, 2001). Our methods can be used
to show thatT∗ − Tm = T − Tm + T∗ − T and to distinguish confounding bias(T − Tm) from the
nonlinearity effect (T∗ − T).

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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