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SUMMARY

Time series studies of environmental exposures often involve comparing daily changes in a toxicant mea-
sured at a point in space with daily changes in an aggregate measure of health. Spatial misalignment of
the exposure and response variables can bias the estimation of health risk, and the magnitude of this bias
depends on the spatial variation of the exposure of interest. In air pollution epidemiology, there is an
increasing focus on estimating the health effects of the chemical components of particulate matter (PM).
One issue that is raised by this new focus is the spatial misalignment error introduced by the lack of spatial
homogeneity in many of the PM components. Current approaches to estimating short-term health risks
via time series modeling do not take into account the spatial properties of the chemical components and
therefore could result in biased estimation of those risks. We present a spatial–temporal statistical model
for quantifying spatial misalignment error and show how adjusted health risk estimates can be obtained
using a regression calibration approach and a 2-stage Bayesian model. We apply our methods to a database
containing information on hospital admissions, air pollution, and weather for 20 large urban counties in
the United States.

Keywords: Acute health effects; Cardiovascular disease; Chemical speciation; Measurement error; Particulate matter;
Spatial modeling.

1. INTRODUCTION

Estimatingthe health risks of environmental exposures often involves examining data at different lev-
els of spatial resolution. This mismatch between data measured at different resolutions results in spatial
misalignment (Banerjeeand others,2004), which can induce error and bias estimates of risk. Spatial
misalignment in environmental health studies is common because the exposure data and the health data
often come from independent sources. For example, in an air pollution study in the United States, data on
ambient air pollution levels often are based on a network of monitors operated by the US Environmental
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Protection Agency (EPA) where each monitor measures pollution at a specific point location. Data on an
outcome of interest, such as the numbers of hospital admissions for cardiovascular disease, might come
from the Centers for Medicare and Medicaid Services. In cohort studies that compare health outcomes
and exposures across people, information about individual persons may be available but exposure data
may be derived from a computer model at a much lower resolution. Because health and exposure data are
often collected independently of each other, they are rarely spatially aligned. Hence, a direct comparison
of the exposure and health outcome is not possible without a model (or an assumption) to align the 2 in
the spatial domain.

In a time series study of air pollution and health, one is interested in estimating associations between
daily changes in county-wide hospital admissions or mortality counts and daily changes in county-wide
average levels of a specific pollutant. The problem is that we do not directly observe county-wide average
pollutant levels. Rather, we have measurements taken at a handful of monitors (sometimes only one) lo-
cated inside the county boundaries. For a spatially homogeneous pollutant, the value of the pollutant at
a single monitor can be representative of the county-wide average ambient level of that pollutant. Some
pollutants, particularly some gases such as ozone, are reasonably spatially homogeneous across the area
of a county. The total mass of particulate matter (PM) less than 2.5μm in aerodynamic diameter (PM2.5),
whosehealth risks have been examined extensively, is fairly spatially homogeneous, and monitor mea-
surements of PM2.5 in counties with multiple monitors tend to be highly correlated across both time and
space (Pengand others, 2008;Bell and others,2007). With a pollutant such as PM2.5, the misalignment
between the continuous nature of the pollutant process and the aggregated nature of the health data does
not typically pose as serious a problem as some other pollutants. In this situation, current approaches for
data analysis may provide reasonable estimates of risk.

There are many sources of measurement error in the analysis of air pollution and health data, and
much previous work has focused on the mismatch between personal and ambient exposures to an airborne
pollutant (Dominici and others, 2000; Zegerand others, 2000). This is indeed an important problem,
but it is typically not the one that can be dealt with using the types of data that are routinely available.
Given an aggregated health outcome, the ideal exposure is the average “personal” exposure over the
population (Zegerand others, 2000). Because it is unrealistic to measure this quantity repeatedly over
long periods of time, population studies must resort to suitable proxies such as the average “ambient”
concentration.

A key assumption made in previous time series analyses of air pollution and health data was that the
pollutant of interest is spatially homogeneous and that the monitor value on a given day (or the aver-
age of a few monitors) is approximately equal to the true ambient average concentration over the study
population area. Any difference between the monitor value and the true ambient average concentration is
what we call “spatial misalignment error.” In past analyses, the assumption that this error was zero may
have been reasonable given that most previous analyses focused on pollutants such as the total mass of
particulate matter (PM10, PM2.5), ozone, and other pollutants that have been shown to be fairly spatially
homogeneous over relatively long distances (Samet, Zeger,and others, 2000).

Recently, data have become available from the US EPA’s Chemical Speciation Trends Network (STN)
as well as State and Local Air Monitoring Stations which provide daily mass concentrations of approxi-
mately 60 different chemical elements of PM2.5. These data are monitored in over 200 locations around the
United States starting from the year 2000. Although the data are promising and are the subject of intense
interest and new research, they also raise new statistical challenges. In particular, the usual assumption that
the monitor value is approximately equal to the ambient average is less tenable when examining certain
components of PM2.5 (Bell andothers, 2007). Figure1 shows the correlations between pairs of monitors
in the STN for 7 components of PM2.5 massas a function of the distance between the monitors. For all
the chemical components, the correlations decrease with distance, but the rate at which the correlations
decrease varies by component. Figure1 provides evidence that some components of PM2.5 arespatially
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Fig. 1. Correlations between monitor pairs as a function of distance between monitors (correlations are plotted on the
Fisher’sz-transform scale).

homogeneous with high correlations over long distances (>50 km), while other components are spatially
heterogeneous and exhibit practically no correlation beyond short distances (<20 km).

Much of the spatial heterogeneity in the chemical components measured by the STN can be explained
by the nature of the sources of the various components. For example, elemental carbon (EC) and organic
carbon matter (OCM) tend to be emitted primarily from vehicle or other mobile sources, and thus their
spatial distribution can depend on the localized nature of those sources. Secondary pollutants such as
sulfate and nitrate are created in the air by the chemical and physical transformation of other pollutants
and tend to be more regional in nature. Hence, for spatially heterogeneous pollutants such as EC or OCM,
the daily level of those pollutants at a single monitor may be a poor surrogate for the daily county-wide
average ambient level of that pollutant.

Although we focus mainly on time series studies in this paper, spatial misalignment can also induce
error in cross-sectional studies of air pollution and health.Gryparisand others(2008) demonstrate in
detail how to handle the misalignment errors in these types of studies and compare the performance of a
number of different statistical approaches. An alternate modeling approach has been proposed byFuentes
and others(2006) for estimating the spatial association between speciated fine particles and mortality.
Both approaches introduce a spatial model for the monitored pollutant concentrations and either predict
pollutant values at unobserved locations or compute area averages over counties to link with county-level
health data. While much work has been done illustrating the problem of spatial misalignment for cross-
sectional studies, little has been done for time series studies estimating short-term health effects.

With the emergence of the PM components data and the critical interest in estimating the health effects
of those components, the problem of spatial misalignment becomes relevant and new statistical methods
need to be developed to properly analyze these data. Specifically, there is a need to develop approaches
that account for the varying amounts of spatial information we have about chemical component levels
over wide regions. These methods could be used to estimate and report health risks associated with PM
components while simultaneously incorporating the spatial information (or lack thereof) we have for each
component.
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In this paper, we describe a general method for estimating health risks associated with PM compo-
nents from time series models while adjusting for potential spatial misalignment error. We first develop a
spatial–temporal model for the exposure of interest and estimate the degree of spatial misalignment error
for each component in a location. We then apply 2 methods—a regression calibration procedure and a
2-stage Bayesian model—to estimate the health risks associated with these components and compare the
results to standard approaches. Our methods are applied to a large database containing information on
daily hospital admissions for cardiovascular diseases and chemical components of ambient PM for 20
large urban counties in the United States.

2. CURRENT METHODS

Currentapproaches to time series analysis of air pollution and health data typically use county-level
health data and treat the day as the temporal unit of analysis. On a given day, the outcome is the count
of the number of hospitalizations for a specific disease occurring in that county or perhaps the number
of deaths due to a specific cause. The exposure is typically the level of a pollutant recorded at a monitor
located within the county boundaries on that day. If there are multiple monitors located in the county
(sometimes between 2 and 10), then an average of the available monitors on that day is used as a sin-
gle exposure concentration. For example, in the National Mortality, Morbidity, and Air Pollution Study
(NMMAPS), multiple monitors were averaged using a 10% trimmed mean to remove any outlying large
or small values (Samet, Dominici,and others, 2000). Similar approaches have been taken in other time
series studies (Katsouyanniand others,2001).

For a given county, there is a time series for the outcomeYt anda single time series for the exposure
pollutant wt which might represent the daily averages across multiple monitors. Generalized additive
models are often used to estimate the day-to-day association between the 2 time series while controlling
for the potential confounding effects of weather, season, and other factors (Pengand others, 2006;Welty
and Zeger, 2005;Touloumiand others, 2004). Log-linear Poisson models are commonly used with smooth
functions of time, temperature, and dew point temperature (or relative humidity),

logE[Yt ] = α + θwt + βββ ′zt + s(t, λ1) + s(tempt , λ2) + s(dewptt , λ3), (2.1)

whereYt is the count of the number of events (i.e. admissions, deaths),zt representsa vector of covariates
(e.g. indicators for the day of the week, age category–specific intercepts),s is a smooth function, and the
λi s are smoothing parameters controlling the smoothness of their respective functions. Common choices
for the smooth functions include penalized splines, smoothing splines, and parametric natural splines.
Variations on the model in (2.1) are used depending on meteorological or other local conditions. In ad-
dition, it is common to use a quasi-likelihood approach rather than a fully Poisson model to allow for
overdispersion.

The parameter of interest isθ , the log–relative risk of the exposurewt , with the remaining elements
of the model being nuisance parameters. When total mass PM is the exposure of interest, the risk is often
reported as 100× (exp(10θ)−1), which is the percent increase in the outcome for a 10μg/m3 increasein
PM. Another common increment for reporting risk estimates is the interquartile range of the pollutant data.

One key assumption made by current approaches is that the monitor value (or average of monitor
values) represents the average ambient concentration. For some pollutants such as PM2.5 total mass, this
assumption is approximately true. However, for many components of PM2.5, the observed spatial hetero-
geneity of the component raise concerns about whether the monitor values are good surrogates for the
average ambient concentration.

In Section3, we present a model for assessing the degree of spatial misalignment measurement error
when using PM chemical components data and an approach for adjusting estimates of the short-term
health risks of PM chemical components obtained from time series regression models.
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3. STATISTICAL MODEL FOR SPATIAL MISALIGNMENT

Our approach to estimating the short-term health risks of chemical components of PM2.5 while adjusting
for spatial misalignment error is divided into 2 parts.

1. Spatial–temporal model: The first part of our approach fits a spatial–temporal model to the pollutant
data using all available data from the national monitoring network. Once this global model is fitted,
we can use it to make predictions in specific counties around the country (Section3.1).

2. Health risk model: The second part of our approach involves health risk estimation for residents of a
specific US county. This part connects the health data for a given county with the pollutant data via
the spatial–temporal model. The outcome is the number of adverse events (e.g. hospital admissions)
occurring in the county on a given day. The exposure is the ambient average pollutant level in that
county which we estimate by integrating the spatial–temporal model over the area determined by
the county’s geographic boundaries (Section3.4).

In this paper, we take each pollutant separately and fit a separate spatial–temporal model to each pollutant.
Once we have a spatial–temporal model for a given pollutant, we can connect the model to health data
from a county to estimate health risks in that county. To estimate health risks for the same pollutant
in a different county, we use the same spatial–temporal model for that pollutant and change the health
risk model to incorporate health data from the new county. Similarly, we estimate a new exposure by
integrating the spatial–temporal model over the area defined by the new county’s geographic boundaries.
Table1 summarizes the different modeling components and the data used to fit each part of the model.

A third and separate component of our modeling framework is the spatial misalignment error model.
In Sections3.2–3.3, we employ a classical measurement error model to estimate the proportion of the
total temporal variation in the pollutant data that can be attributed to spatial misalignment. Using this
approach, we can assess what factors, such as pollutant characteristics, monitoring density, and county
size, are associated with spatial misalignment error.

3.1 Spatial–temporal model for exposure

We assume that for a given timet and point locations, a pollutant can be modeled by a spatial stochastic
process

w(s,t) = μ(s,t) + ε(s,t),

whereμ(s,t) is a fixed-effect term andε(s,t) is a mean zero Gaussian process with varianceσ 2 and
correlationfunctionρ(∙, ∙). We further assume an isotropic covariance model so that

Cov(ε(s,t), ε(s′, t ′)) =

{
σ 2ρ(‖s− s′‖), t = t ′,

0, t 6= t ′,

Table 1. Model components and data sets used to estimate parameters

Model component Data Parameters

Spatial–temporal National speciation monitoring network: 313 monitors with
1-in-6 day observations on PM2.5 chemical components, years
2000–2006 (see Figure2 for locations of monitors)

μ(), φ, κ, σ , x

Health risk Daily county-specific time series of cardiovascular hospital
admissions from Medicare claims, 2000–2006; county-specific
geographic boundaries; predictions from spatial–temporal model

θ

Spatial misalignment variance National speciation monitoring network; county-specific
geographic boundaries

τ2
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where‖ ∙ ‖ is the Euclidean distance between 2 points. In this formulation, we do not model the temporal
correlation structure and assume that the data are independent in time conditional on the fixed effect
μ(s,t), which may contain nonparametric smoothers of time and/or space. Given that the data in which
we are most interested are sampled only once every 6 days, we expect the residual autocorrelation to be
small. For the correlation functionρ, we use the flexible Matérn correlation function with parametersφ
andκ, which has the form

ρ(u; φ, κ) =
1

2κ−10(κ)

(
u

φ

)κ

Kκ

(
u

φ

)

for φ > 0 andκ > 0, whereK is the modified Bessel function of the third kind. We make use of thegeoR
R package implementation of this model (Ribeiro and Diggle,2001).

Let wt = (w(s1, t), . . . , w(sn, t)) andμμμt = (μ(s1, t), . . . , μ(sn, t)), wheres1, . . . , sn arethe loca-
tions of all the monitors in the pollutant monitoring network. Then for a given time pointt , the observed
data at that time point follow the distributionwt ∼ N (μμμt , σ

2H(φ, κ)), whereH is ann × n correlation
matrix with elements

[H(φ, κ)]i j = ρ(‖si − sj ‖; φ, κ) (3.2)

andρ is the Mat́ern correlation function. The joint likelihood for the data across all time points is then

L(σ, φ, κ) ∝
T∏

t=1

σ−1|H(φ, κ)|−1/2 exp

(
−

1

2σ2
(wt − μμμt )

′H(φ, κ)−1(wt − μμμt )

)
, (3.3)

wherethe matrixH(φ, κ) is defined as in (3.2). The likelihood in (3.3) can be maximized using standard
nonlinear optimization techniques to obtain the maximum likelihood estimates for the parametersσ , φ,
andκ as well as any parameters incorporated intoμμμt . To obtain standard error estimates, we use the
diagonal of the inverse Hessian matrix calculated at the maximum (Nocedal and Wright, 1999).

3.2 Spatial misalignment error model

On a given dayt , a monitor in a county can be thought of as providing a surrogate measurement for the
county-wide average ambient concentration (for now assume that there is only one monitor located in the
county). We call this observed monitor valuewt , which is the concentration of the component on dayt at
the monitor location. Letxt bethe true but unobserved county-wide average concentration of the pollutant
on dayt . The difference between the 2 values can be described with a classical measurement error model,
so that

wt = xt + ut , (3.4)

whereut is a random variable withE[ut ] = ηt andVar(ut ) = τ2
u . The extent towhichwt differs fromxt

is the spatial misalignment error, andτ2
u is the error variance. In practice, we occasionally have more than

one monitor in a county, sothatwt reflectsthe average of the available monitors on dayt . As the number
of monitors increases, we would expectτ2

u to decrease. Note that the nonzero meanηt for ut arisesfrom
the inclusion of fixed effectsμ(s,t) in the spatial–temporal model for the pollutantw(s,t). If desired, this
could be removed by first detrending all the data but it plays no role in our analysis.

If a pollutant is inherently spatially homogeneous, thenτ2
u will likely be smallandwt will generally

serve as a good surrogate for the true county-wide averagext , even with just a single monitor. If the pol-
lutant is inherently spatially heterogeneous, thenτ2

u will likely be largeandwt serves as a poor surrogate
for the county-wide average. PM components such as EC and silicon, as well as the coarse fraction of
PM, tend to fall into this latter category.
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Theclassical measurement error model appears appropriate for this situation because we would expect
pollutant values at an individual monitor to be more variable over time than the county-wide average. The
other assumption made by the classical model is that the errors are independent ofxt . We will examine
this assumption further in the data analysis. Ultimately, it may be that neither the classical nor the Berkson
model truly describes the relationship between the observed data and the underlying county-wide average,
but the classical model seems reasonable in this application.

Given that a single monitor value can be a poor surrogate for the county-wide average ambient con-
centration, our goal is to use information from other monitors in neighboring counties to obtain a better
estimate of the county-wide average. With a spatial–temporal model for the underlying pollutant process,
we can estimate the county-wide average concentration on each day and subsequently use those estimated
concentrations to obtain health risk estimates for the pollutant.

3.3 Estimating misalignment error

In this section, we describe how one can estimateτ2
u , the spatial misalignment error variance for a specific

area. Clearly, if we only had data from a single county with a single monitor, it would not be possible
to estimateτ2

u becausewe require an estimate ofxt , the ambient average. Our approach uses the spatial–
temporal model described in Section3.1to estimatext in a specific county. Because the model is fitted to
data from the entire monitoring network, it borrows information from all locations to make predictions in
a specific county. The estimate ofxt producedby the spatial–temporal model can subsequently be used to
estimateτ2

u for a county.
Suppose we have a county represented by polygonA with monitors located at coordinatesv1, . . . , vm

within the county boundaries.Then

wt =
1

m

m∑

i =1

w(vi , t),

xt =
1

‖A‖

∫

A
w(s,t)ds.

Note that the locationsv1, . . . , vm will be a subset of all the locationss1, . . . , sn in the national monitoring
network used to fit the spatial–temporal model forw(s,t) above.

In a typical air pollution application, the number of monitorsm in a county might range from 1 to 10.
One intermediate target of inference is the misalignment error varianceτ2

u = Var(ut ) = Var(wt − xt )
for a given county. The monitor values inside the countyw(v1, t), . . . , w(vm, t) andthe true county-wide
averagext have a joint Normal distribution










w(v1, t)

...

w(vm, t)

xt










∼ N

([
μμμt

μx,t

]

, σ 2

[
H11 H12

H21 H22

])

, (3.5)

where

μx,t =
1

‖A‖

∫

A
μ(s,t)ds
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and

[H11]i j = ρ(‖vi − v j ‖; φ, κ),

[H12]i =
1

‖A‖

∫
ρ(‖vi − s‖;φ, κ)ds,

H21 = H ′
12,

H22 =
1

‖A‖2

∫∫
ρ(‖s− s′‖; φ, κ)dsds′.

Thespatial misalignment error varianceτ2
u for the county can then be calculated as

τ2
u = σ 2



 1

m2

∑

i, j

[H11]i j −
2

m

∑

i

[H12]i + H22





= σ 2



 1

m2

∑

i, j

ρ(‖vi − v j ‖; φ, κ) −
2

m

∑

i

1

‖A‖

∫
ρ(‖vi − s‖;φ, κ)ds

+
1

‖A‖2

∫∫
ρ(‖s− s′‖; φ, κ)dsds′

]
.

Thevalues ofσ 2, φ, andκ are unknown, and so we plug in the maximum likelihood estimates of those
parameters to obtain our estimate ofτ2

u . Because the integrals required above are all over the domain of the
county boundary, which is likely to be highly irregular, we use a Monte Carlo approximation. We generate
random variablesp1, p2, . . . , pB thathave a uniform distribution over the areaA and then calculate

1

‖A‖

∫
ρ(‖si − s‖;φ, κ)ds≈

1

B

B∑

j =1

ρ(‖si − pj ‖; φ, κ),

1

‖A‖2

∫∫
ρ(‖s− s′‖; φ, κ)dsds′ ≈

1

B2

B∑

j =1

B∑

j ′=1

ρ(‖pj − pj ′ ‖; φ, κ).

These approximations can be made arbitrarily precise by increasing the number of sample pointsB.
The estimate ofτ2

u , the spatial misalignment error variance, describes the amount of total variation
in the monitoring data for a county(i.e. wt ) that can be attributable to spatial misalignment error. Note
that for the purposes of risk estimation (described in Section3.4), the explicit calculation ofτ2

u is not
required. However, the values ofτ2

u can be used to assess the impact of spatial misalignment across
different counties and different pollutants. The magnitude ofτ2

u in a county will depend on the spatial
characteristics of the pollutant, the size of the county, and the number of monitors in the county.

3.4 Risk estimation

For the purpose of risk estimation, we need to produce an estimate of the ambient average pollutant level
that can be used as the exposure in the health risk model. In this section, we use the spatial–temporal
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model to estimate the ambient average and present 2 methods for linking the exposure estimate to the
health outcome.

Let wt = (w(s1, t), . . . , w(sn, t)) representthe observed data for all the monitors on dayt . Using the
spatial–temporal model and the joint distribution in (3.5), the conditional distribution of the true unob-
served county-wide averagext given the data is

xt |wt ∼ N (μx,t + H ′
12H−1

11 (wt − μμμt ), σ
2(H22 − H ′

12H−1
11 H12)), (3.6)

wheremaximum likelihood estimates ofσ 2, φ, andκ are plugged in where necessary. We use this condi-
tional distribution to adjust estimates from health risk models in 2 different ways.

Two-stage Bayesian model.The main approach we describe for adjusting risk estimates for spatial mis-
alignment error is a 2-stage Bayesian model. In the first stage, we estimater (xt |wt ), which is simply
the distribution in (3.6), that is, the posterior distribution ofxt given the datawt for eacht . The second
stage usesr (xt |wt ) asan informative prior forxt andestimates the joint posterior distribution ofθ and
x = (x1, . . . , xT ), given the health datay and the observed pollutant dataw,

p(θ, x|y, w) ∝ p(y|θ, x, w)r (x|w)π(θ)

=

[
T∏

t=1

p(yt |θ, xt , wt )

][
T∏

t=1

r (xt |wt )

]

π(θ),

wherey = (y1, . . . , yT ), w = (w1, . . . , wT ), andπ(θ) is a diffuse prior distribution. The likelihood terms
p(yt |θ, xt , wt ) representthe Poisson likelihood used for the time series model relating pollutant exposure
to health outcomes. Details on that part of the model are shown in Section5.2. Note that only the second
stage of the model (the health risk estimation) is Bayesian, while the first stage of the model is estimated
with maximum likelihood and is considered a fixed prior in the second stage. For a full Bayesian model,
the target marginal posterior ofθ given the data is

p(θ |y, w) =
∫

p(θ, x|y, w)dx

=
∫

p(θ |x, y, w)p(x|y, w)dx.

Our 2-stage approach effectively assumes thatp(x|y, w) ≈ r (x|w), thus cutting the feedback betweenx
andy. Given that previous studies have indicated that the relationship between the health outcomey and
the pollutant exposurex is generally weak, this assumption is not likely to be unreasonable. Furthermore,
we obtain the tremendous practical advantage of separating the model into 2 stages so that the substantial
work of fitting the spatial model in the first stage (as well as the model checking) can be conducted
separately from the parameter estimation in the second stage.

The posterior distribution ofθ given the data can be sampled using Markov chain Monte Carlo
(MCMC) techniques. Specifically, we use a hybrid Gibbs sampler and alternate sampling from the full
conditional distributions ofx andθ . Details of the sampling algorithm can be found in the Appendix.

Regression calibration.As an alternative to the 2-stage Bayesian model, we can use a regression calibra-
tion type of approach (Carrolland others,2006). Using the distribution in (3.6), we can calculateE[xt |wt ]
for each dayt . Then substitutingE[xt |wt ] in placeof wt andconducting the standard analysis described
in Section2 would give us the regression calibrated estimate of our risk parameterθ . This method should
produce estimates that are similar to the 2-stage model and has the advantage that it requires substantially
less computation.
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4. SIMULATION STUDY

We designed a simulation study to assess the properties of the regression calibration and 2-stage Bayesian
methods. The full details of the simulation design can be found in the supplementary material (available
atBiostatisticsonline). Briefly, we simulated 3 spatial–temporal processes of varying smoothness (rough,
moderate, and smooth) and applied the regression calibration and 2-stage Bayesian approaches to the
simulated data. The 2 approaches were compared with using the true ambient average pollutant level and
the naive approach. Comparisons were made based on coverage of a 95% confidence interval, relative
bias, and root mean squared error (RMSE). For the rough pollutant data scenario, there was a clear bias–
variance trade-off between the regression calibration and 2-stage model compared to the naive method
which just uses the raw mean of the within-county monitors. Both the regression calibration and the
2-stage models appeared reasonably unbiased across the simulations but estimated the log–relative risk
parameter with much greater variability. The naive method was quite precise but was biased toward the
null. Under the moderate smoothness scenario, all 3 methods did reasonably well with some bias incurred
by the naive method. For the smooth scenario, all methods performed equally well.

5. APPLICATION

Daily counts of hospital admissions for the period 2000–2006 were obtained from billing claims of en-
rollees in the US Medicare system. Each billing claim contains the date of service, disease classification
(International Classification of Diseases 9th Revision [ICD-9] codes), age, and county of residence. We
considered as an outcome urgent or emergency hospital admissions for cardiovascular diseases, which
were calculated using ICD-9 codes (Dominici and others, 2006). The daily counts of hospitalizations
were calculated by summing the hospital admissions for each disease of interest recorded as a primary
diagnosis. To calculate daily hospitalization rates, we constructed a parallel time series of the numbers of
individuals enrolled in Medicare that were at risk in each county on each day. We restricted the analysis
to the 20 large counties in the country with at least 100 observations on components of PM2.5 over the
7-year period of 2000–2006.

In the United States, chemical components of PM2.5 aretypically measured once every 6 days and pat-
terns of missing data vary depending on when monitors began collecting data regularly. For this analysis,
we do not attempt to impute the data and only use the days for which we have observations for all relevant
variables. Our analysis was limited to the components making up a large fraction of the total PM2.5 mass
or covarying with total mass. These components were sulfate, nitrate, silicon, EC, OCM, sodium ion, and
ammonium ion. These 7 components, in aggregate, constituted 83% of the total PM2.5 mass,whereas all
other components individually contributed less than 1% (Bell and others,2007). In total, we obtained
data from 313 chemical speciation monitors across the United States. A map of the monitor locations is
shown in Figure2. National temperature and dew point temperature data were obtained from the National
Climatic Data Center on the Earth-Info CD database.

5.1 Estimation of spatial–temporal model

For each of the 7 chemical components, we fit the spatial–temporal model described in Section3. Because
we are only interested in short-term associations between chemical components and health outcomes, be-
fore fitting the model, we detrended the time series for each component, removing any seasonal fluc-
tuations and long-term trends. To detrend the data, we fit a linear model with the monitor value for
the component as the response and the day of the week, a natural spline of time with 49 degrees of
freedom (i.e. 7 degrees of freedom per year), and temperature as predictors. The residuals from this
model were then used as our new chemical component predictor variable. Figure 6 of the supplementary
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Fig. 2. Locations of 313 chemical speciation monitors in the United States, 2000–2006.

Table 2. Maximum likelihood parameter estimates for Matérn model with asymptotic standard errors in
parentheses

σ φ κ

Sulfate 1.25(0.0016) 5.32(0.0716) 0.12(0.0012)
Nitrate 1.23(0.0016) 2.86(0.0500) 0.16(0.0022)
Silicon 0.39(0.0005) 6.57(0.1296) 0.06(0.0009)
EC 0.61(0.0008) 8.98(0.2794) 0.03(0.0006)
OCM 1.54(0.0020) 7.14(0.1574) 0.06(0.0009)
Sodium ion 0.49(0.0006) 10.25(0.6736) 0.01(0.0005)
Ammonium 0.88(0.0011) 4.78(0.0709) 0.12(0.0013)

material (available atBiostatisticsonline) shows the average autocorrelation function for each component,
averaged across all monitors. We can see that on average, after detrending there is relatively little auto-
correlation left in the data. There is some indication of positive autocorrelation at lags 1–2 for sulfate and
ammonium; however, it should be noted that there are very few data to estimate correlations at lags that
are not multiples of 3, and hence, the estimates at lags 1 and 2 are highly uncertain.

In Table2, we show the estimates of the parameters in the Matérn model for each of the 7 components.
Asymptotic standard errors for the parameters were obtained by inverting the Hessian matrix estimated
from maximizing the log-likelihood. The parameter estimates produce correlation functions that generally
agree with our knowledge of the spatial distribution of these chemical components. For sulfate, nitrate,
and ammonium, the decrease in correlation with distance is generally slower than for silicon, EC, OCM,
and sodium ion. For all the components, the small estimates ofκ coupled with a relatively large value
of φ produce a rapid decrease in correlation at short distances followed by a slower decrease at longer
distances.

Model checking. To examine the fit of the spatial–temporal model, we divided then monitors randomly
into 8 groups and conducted an 8-fold cross validation. At each iteration, we held-out 1 group of monitors
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Table 3. RMSE for prediction of spatial–temporal model at held-out monitors

Sulfate Nitrate Silicon EC OCM Sodium ion Ammonium

RMSE 1.00 0.47 0.04 0.09 0.85 0.02 0.40
RMSE/median 0.34 0.50 0.68 0.17 0.26 0.34 0.31

and fit the model using the monitors from the remaining 7 groups. We then used the fitted model to
predict all the values at the held-out monitors. We used mean squared error to summarize the model’s
performance.

Table3 shows RMSEs for the spatial–temporal model from the 8-fold cross validation. We also show
the RMSE divided by the median levels of each chemical component so that the RMSE can be compared
across the different scales of variation of the chemical components. Table3 is meant to give some sense
of the prediction accuracy of the spatial–temporal model. However, it should be noted that the ultimate
purpose of the model is to predict the county-wide average chemical component level. Predicting chemical
component concentrations at specific locations is used here as a measure of model fit, albeit an imperfect
one.

We also checked the assumptions of the measurement error model in (3.4), which assumes that the
errorsut areindependent of the true county-wide average valuesxt . For each county in the analysis, we
held out the monitors inside the county and fit the spatial–temporal model to the remaining monitors. We
then compared the estimate of the county-wide average based on the monitor values inside the county, wt ,
andthe posterior mean of the true county-wide average,xt , obtained from the model. After calculating
ut = wt − xt , the correlation betweenxt andut , on average across locations and chemical components,
was 0.27, indicating a relatively weak correspondence between the 2.

Spatial misalignment error.Using the fitted spatial–temporal model, we can compute estimates ofτ2
u , the

spatial misalignment error variance from (3.4), for each of the 7 chemical components and each county.
For each component, we can also estimateσ 2

x , the marginal temporal variance of the true unobserved
county-wide average component level, usingσ 2H22 in (3.5). Table4 shows for each of the 20 counties and
7 components the spatial misalignment error variance ratio, which is the ratio of the spatial misalignment
error variance to the variance of true county-wide average, that is,τ2

u/σ 2
x . We can see that the components

silicon, EC, OCM, and sodium ion generally have much larger error ratios than the other 3 components.
In addition, there appears to be a correspondence between the error ratios and size of the county (by area)
as well as the number of monitors.

Monitor coverage. To assess the relationship between the number of monitors in a county and the degree
of spatial misalignment error, we fit a linear regression of the form

log2
τ2

u

σ 2
x

= β0 + β1 log2(Numberof monitors in a county)+ β2 log2(Countyarea).

The data for this model are taken from Table4, and we fit a separate model for each chemical component.
In this model,β1 canbe interpreted as the change in the spatial misalignment error ratio with a doubling
of the number of monitors in the county. In order for this quantity to be interpretable, we have to adjust
for the area of the county first.

In each of the panels of Figure3, we plot for each county the partial residuals for the number of
monitors on thex-axis and the partial residuals for the spatial misalignment error ratioτ2

u/σ 2
x on the

y-axis (both are on a log2 scale).The estimated values ofβ1 for each component are shown inside the

individual panels in Figure3. Givenβ̂1, we can compute 100× (2β̂1 − 1), which is the percent change in
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Fig. 3. The (log2) spatial misalignment error ratio versus the (log2) number of monitors in a county, adjusted for
county area.

the proportion of spatial misalignment error associated with doubling the number of monitors in a county,
adjusting for a county’s area.

It appears that for each component, counties with more monitors in them (adjusted for the total area of
the county) have smaller spatial misalignment error variance ratios. For example, when estimating county-
wide average nitrate levels, counties with 2 monitors rather than 1 have an approximately 35% decrease in
the spatial misalignment error variance ratio. For EC, the benefit of going from 1 to 2 monitors is a 46%
decrease in the error ratio and for sodium ion there is a 48% decrease. While the spatial misalignment
error generally decreases for all PM components when the number of monitors increases, the benefit is
especially pronounced for silicon, EC, OCM, and sodium ion. Thus, for more spatially heterogeneous
components, more benefit (i.e. less spatial misalignment error) is gained by additional monitor coverage
than for components that are spatially homogeneous.

5.2 Risk estimation

For each county, we fit the following log-linear Poisson model to the health and chemical component data,
which is an extended version of the model in (2.1):

logE[Yt ] = α + θxt + s(t, λ1) + s(tempt , λ2) + s(dewptt , λ3)

+ log(# at riskt ) + γ dowt + s(temp1–3,t , λ4) + s(dewpt1–3,t , λ5),

whereYt is the number of admissions for cardiovascular disease andxt is the county-wide average of the
chemical component being examined. When we use the regression calibration approach,xt is estimated
using the regression calibration functionE[xt |wt ], and with the 2-stage Bayesian model, the values of
xt are sampled from the full conditional distribution within the MCMC iterations. We assume that the
variables other than the pollutant variable are measured without error.

The additional terms in the model represent an offset for the number of people at risk, the day of
the week, a smooth function of the 3-day running mean of temperature, and a smooth function of the
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3-dayrunning mean of dew point temperature. The running means of temperature are included to capture
the effects of temperature in the winter (Sametand others,1998). For the smooth functions, we used
λ1 = 49,λ2 = λ4 = 6, andλ3 = λ5 = 3. These values have been used previously and generally capture
the variation in season as well as temperature (Pengand others,2006;Welty and Zeger, 2005).

Estimates of the risk parameterθ are shown in Table5. The results are shown for estimates obtained
using standard maximum likelihood, which ignores the spatial misalignment problem, as well as regres-
sion calibration and the 2-stage Bayesian model which explicitly adjust for spatial misalignment error. For
the Bayesian model, we use the posterior mean as our point estimate and the posterior standard deviation
as our measure of uncertainty. Table5 shows the 5 largest counties (by population) of the 20 counties we
examined.

The point estimates from the regression calibration procedure and the 2-stage Bayesian model are
generally in agreement given the uncertainties. The standard errors for the Bayesian estimates tend to
be slightly larger than the standard errors obtained using the regression calibration procedure. We see in
Table5 that the chemical components that exhibited greater spatial misalignment error resulted in larger
adjustment for their estimated risk parameters. However, for components where there did not appear to be
a strong association to begin with (e.g. silicon), the adjusted estimates from the regression calibration and
Bayesian models were not substantially different from the maximum likelihood estimates. In the supple-
mentary material, we show the point risk estimates for each component in all 20 counties (Figures 7–13,
available atBiostatisticsonline).

Figure 14 of the supplementary material (available atBiostatisticsonline) shows the inverse-variance
weighted average of the risk estimates across all 20 counties for each component and each model. EC and
sodium ion are relatively heterogeneous spatially, and we see that across the 20 counties the adjustment
for spatial misalignment changes the point estimates substantially. Sulfate and ammonium are much more
spatially homogeneous, and we can see from Figure 14 of the supplementary material (available atBio-
statisticsonline) that the adjustment for spatial misalignment has little effect here. The other components
showed only modest differences in their point estimates between the 3 models.

6. DISCUSSION

We have presented a statistical model for estimating short-term health risks of air pollution from time
series studies while adjusting for spatial misalignment error. We demonstrated a regression calibration
approach that is computationally very efficient as well as a 2-stage Bayesian model. These approaches
were used to estimate the risk of cardiovascular hospitalization associated with exposure to chemical
components of PM.

The methods proposed in this paper will likely be useful when (1) one wishes to estimate the risk of
ambient exposure to a very spatially heterogeneous pollutant such as EC and (2) there are few monitors
available inside a county, but monitors exist outside the county so that information about spatial variabil-
ity of a pollutant can be “borrowed” from outside the county by fitting a spatial–temporal model to all
available data.

Our findings indicate that the effect of spatial misalignment depends on monitor coverage within a
county and the spatial variability of the pollutant of interest. In general, a decrease in the area covered per
monitor in a county is associated with lower spatial misalignment error, and this effect is far more pro-
nounced for pollutants that are inherently heterogeneous such as sodium ion, silicon, and EC. In particular,
for counties with only one monitor, it would seem that there may be some benefit to using one additional
monitor in the county. Results of our data analysis show that the largest differences in the risks estimated
by our methods are observed in areas where there is a large ratio of the county area to the number of
monitors.
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In our application, we found that health risk estimates for EC, a pollutant exhibiting large spatial het-
erogeneity, were generally larger using approaches that accounted for spatial misalignment. The adjusted
estimates exhibited the classic bias–variance trade-off with their substantially inflated standard errors.
This increased statistical uncertainty comes from accounting for the lack of information about levels of
the pollutant at all points in the county. For homogeneous pollutants (e.g. sulfate, ammonium), the infor-
mation available from the monitoring network provides sufficient information about county-wide levels
so that adjusted risk estimates are largely unchanged. In general, the pattern of effects observed for the
chemical components of PM in this analysis is consistent with our previous population health studies
incorporating the STN data (Bell and others, 2009;Pengand others,2009).

Both the regression calibration approach and the 2-stage Bayesian model produced similar adjusted
risk estimates in the 20 counties analyzed. However, in general, regression calibration should be used with
care in generalized linear models with nonlinear link functions because a separate bias can be introduced
in those situations (Carrolland others,2006). Although we employed log-linear models in this application,
the small size of the regression coefficients likely produced a nearly linear model, potentially explaining
the similar estimates given by the 2 approaches.

There exist several alternative approaches to estimate exposures for locations without monitors and
also for temporal periods without measurement for use in health-based air pollution research. These in-
clude inverse distance weighting incorporating population density (Ivy and others, 2008), air quality
modeling (Bell, 2006), and kriging (Leem and others, 2006). However, some of these approaches are
computational intensive and rely on data sets beyond those typically used in epidemiological settings.
Our approach has the advantage of relying exclusively on existing data sets that are commonly used in
air pollution studies, and our results can provide insight into the interpretation of results based on sim-
ple county average exposure metrics, such as results across different components or areas with different
monitor coverage.

We must be cautious in translating our results into specific recommendations for monitor placement.
Our analysis did not take into account the placement of the monitors in the county and the density of
the population. For counties with very high population density concentrated in one specific area, a sin-
gle monitor might be sufficient and it would make little sense to place monitors throughout the county
where few people live. Further research is certainly needed in order to determine the optimal usage and
placement of pollution monitors. The design of monitoring networks is generally important for regulatory
purposes and cost trade-offs may be prohibitive as well. Our methodology could be extended to provide a
quantitative basis for assessing the placement of monitors.

There are a number of limitations to our approach that deserve some comment. First, our use of the
Gaussian process in our spatial–temporal model was a convenient simplification and may require modifi-
cation depending on the nature of the data. In particular, a log-Gaussian model may be more appropriate
if the data are skewed. Also related to the spatial–temporal modeling is the assumption of isotropy and
separability of time and space. Given the sparsity of the monitoring network, we are skeptical of our
ability to fit more complex models. Nevertheless, we admit that this is an aspect of our work in need of
further investigation. The small values ofκ along with the large values of theφ estimated in the Matérn
model suggest that the model may be trying to compensate for misspecification of the correlation struc-
ture. In particular, there could be a number of factors that produce sharp changes in the pollutant surface
that cannot be adequately modeled with a constant scale parameterφ. A logical path to explore in this
context would be the use of nonstationary correlation models that can adapt to unknown heterogeneity
in the underlying process (Paciorek and Schervish, 2006). Perhaps, another symptom of the lack of fit of
the spatial–temporal model is the moderate correlation observed between the errors assumed by the clas-
sical error model and the estimated county-wide ambient average (Section5.1). While the classical error
assumption is not needed for the health risk estimation, it was used to estimateτ2, the spatial misalignment
error variance.
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Another limitation of our methodology is that the spatial–temporal model is estimated and then
considered fixed in the health risk estimation. As a result, uncertainty about the parameters in the spatial–
temporal model is not propagated through the risk model leading to a potential underestimation of uncer-
tainty in the risk parameters. We note, however, that there is a substantial amount of data for estimating
the parameters in the spatial–temporal model and that they appear to have been estimated to reasonable
precision. In addition, our approach has the advantage that it greatly simplifies the analysis of multiple
health outcomes by removing the need to refit the spatial–temporal model separately for every health
outcome examined.

One extension to our model would be to incorporate population density information, if available. In
our spatial–temporal pollutant process, we create the county-wide averages by integrating the process
against a uniform density over the county boundary. However, if we could specify a functiong(s) which
indicates the proportion of population at locations, then we could compute the following county-wide
average instead:

xt =
∫

w(s,t)g(s)ds.

This valuext might reflect more accurately the population-level exposure than our current approach. We
consider this an interesting avenue for future work. It should be noted, however, that this approach is
subject to a different type of error, namely exposure misclassification, if residents of a county/region do
not spend the majority of their time in the area where they live.

A second natural extension of our model would be to extend it to the multisite setting where data
are available for many locations. Our approach here was to apply the single-location model described
in Section3 independently to each available county. However, a unified model for multiple locations
would estimate location-specific and national average risks while borrowing strength across locations.
Developing a multi-pollutant version of this model which incorporates correlations between pollutants
would be a third extension (e.g.Shaddick and Wakefield, 2002). This extension is potentially important
because in a multi-pollutant model, pollutants that are measured with error could bias risk estimates for
pollutants that are measured without error. Finally, employing a spatial–temporal model for pollutants
could be useful in cross-sectional studies of chemical components of PM2.5. In particular, the model
could be integrated across time to obtain a long-term average concentration which could be compared
with long-term mortality rates across locations.

Ultimately, the best way to address the problem of spatial misalignment might be to move away
from the county-based summaries of the outcome of interest when possible and begin using summaries
with finer spatial resolution, such as zip codes. Unfortunately, many types of health data are simply not
available at finer spatial resolution, and we often must accept what is available. Furthermore, due to
activity patterns, a high spatial resolution does not necessarily better capture personal exposure than a
larger area when individuals move between areas (e.g. live in one zip code, but work in another). Thus,
there is a strong need for methods that address spatial misalignment of air pollutant concentrations used in
health studies. In such cases, the methods proposed here should be useful for determining the magnitude
of the errors incurred and for obtaining adjusted risk estimates.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available at http://biostatistics.oxfordjournals.org.
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APPENDIX A

A.1 Algorithm for fitting the 2-stage Bayesian model

We propose the following Metropolis–Hastings sampling algorithm for sampling from the joint posterior
density ofθ andx, wherex represents the vector of unobserved true county-wide daily average chemical
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componentlevels andw is the vector of observed daily monitor average values. Briefly, the full condition-
als for bothθ andx are sampled using a Metropolis–Hastings rejection step. All calculations were done
using R version 2.7.1 (R Development Core Team, 2008).

We make use of the profile likelihood forθ andx which profiles out the many nuisance parameters
in the likelihood (Cheng and Kosorok,2008). These parameters include the spline coefficients for the
smooth function of time and the nonlinear functions of temperature and dew point temperature. Including
these parameters in the model would complicate implementation and make prior specification difficult.
The use of the profile likelihood simplifies the MCMC algorithm, but it comes at a cost of theoretical
unity given that the profile likelihood is not a proper likelihood. However, we note that the results of the
2-stage Bayesian model closely mirror the results of the regression calibration method.

Let ηηη be the vector of nuisance parameters in the full likelihood. We evaluate the profile likelihood
Lp(θ, x) = maxηηη L f(θ, x, ηηη), where for each pair of values(θ, x), we maximize the full Poisson likelihood
L f with respect toηηη. This can be done simply by fitting a standard generalized linear model with an offset
for θ andx. Then in the steps to sampleθ andx, we use the profile likelihood to calculate the acceptance
ratios.

1. Samplingθ . We use a random walk Metropolis step so that the proposal distribution at stepi is

θ?|θ(i −1) ∼ N (θ(i −1), V̂),

where V̂ is the variance of the maximum likelihood estimate ofθ . The acceptance ratio is then
calculated as

r =
Lp(θ

?, x(i −1))π(θ?)

Lp(θ(i −1), x(i −1))π(θ(i −1))
,

wherethe priorπ(θ) is taken to be a Normal distribution with mean 0 and standard deviation 10.
2. Samplingx. We sample the vectorx as a block of lengthT , whereT is the number of observations

we have for a given county. The prior distribution forx is the posterior distribution specified in (3.6)
and derived from fitting the spatial model described in Section3. For the proposal distribution, we
use the distribution in (3.6) so that the proposal equals the prior. Given a proposal valuex?, we
compute the acceptance ratio, which in this case is simply the profile likelihood ratio,

r =
Lp(θ

(i −1), x?)

Lp(θ(i −1), x(i −1))
.

Eachsampler was run for 10 000 iterations. Convergence of the chains was diagnosed by estimating Monte
Carlo standard errors of the parameters using the method of batch means described inJonesand others
(2006).
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