Biostatistic5(2011),12,4, pp.610-623
doi:10.1093/biostatistics/kxq083
Advance Access publication on January 20, 2011

Efficient measurement error correction with spatially
misaligned data

ADAM A. SZPIRCO*, LIANNE SHEPPARD, THOMAS LUMLEY

Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
aszpiro@u.washington.edu

SUMMARY
Associationstudies in environmental statistics often involve exposure and outcome data that are mis-
aligned in space. A common strategy is to employ a spatial model such as universal kriging to predict &
exposures at locations with outcome data and then estimate a regression parameter of interest using thé&
predicted exposures. This results in measurement error because the predicted exposures do not corresporgi
exactly to the true values. We characterize the measurement error by decomposing it into Berkson-like g
and classical-like components. One correction approach is the parametric bootstrap, which is effective&gl'
but computationally intensive since it requires solving a nonlinear optimization problem for the expo- 3
sure model parameters in each bootstrap sample. We propose a less computationally intensive alternatives
termed the “parameter bootstrap” that only requires solving one nonlinear optimization problem, and we <
also compare bootstrap methods to other recently proposed methods. We illustrate our methodology in%
simulations and with publicly available data from the Environmental Protection Agency.
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1. INTRODUCTION
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A challenge for association studies in environmental statistics is that we cannot directly measure the expo- g
sure at every location where there is outcome data. Modern Geographic Information System (GIS) tech- $
nology makes it feasible to sample environmental exposures and then to predict exposures at unmonitore 2
locations using a statistical model such as universal kriging that exploits dependence on GIS covariates
and incorporates spatial smoothir@réssie 1993). The overall strategy is to use predicted exposures in
place of the true exposures at locations with outcome data in order to estimate the parameter of interest in&
a regression model. The problem that we address in this paper is how to ensure valid inference in light of
the resulting measurement error.

An example application in environmental epidemiology is evaluating the relationship between expo-
sure to ambient air pollution and adverse health outcomes. Many studies have documented adverse effects
of air pollution (e.g.Dockeryand others,1993; Sametand others,2000; Popeand others,2002), and
recent studies emphasize the importance of using predicted individual air pollution exposures to account
for spatial variability within urban areagddrrettand others2005b;Kunzli and others2005; Gryparis
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and others2007;Szpiroand others2010). Other environmental applications that do not involve human
health effects are analogous from a statistical perspective. An example that we will return to later in this
paper involves assessing the relationship between stream water quality and nearby watershed land cover
(Madsenand others2008;Herlihy and others1998).

Various methods have been employed for predicting exposures, including nearest neighbor interpola-
tion (Miller and others2007), regression based on GIS covariates (Brandrothers2003;Jerrettand
others 2005a), interpolation by a geostatistical method such as krigieigettand others2005b;Kunzli
and others2005), and semi-parametric smoothiigryparisand others2007;Kunzli and others2005).

All these methods result in measurement error that does not fit into the standard categories of classical or
Berkson error (Carrotind others2006). In this paper, we focus on universal kriging.

Kim and otherg2009) have shown that using predicted exposures from kriging performs better than
nearest neighbor interpolation but significant errors may remain resulting in confidence intervals that do
not provide correct coverag@ryparisand otherg2009) review the relevant measurement error literature
and compare several correction strategies in a simulation studyladdenand others(2008) apply a
version of the parametric bootstrap to obtain corrected standard errors (SES).

The parametric bootstrap is effective, but it is computationally intensive since it requires solving a
nonlinear optimization problem to estimate the exposure model parameters in each bootstrap sample.ﬁ,
For a universal kriging exposure model with 450 monitors (as in the examples considered here), each é‘-
nonlinear optimization takes 30—60 s on an Intel Xeon processor running at 2.33 GHz, so a parametric 9
bootstrap with only 100 samples would take approximately 1 h. This is uncomfortably long for routine
usage, but it is feasible if the bootstrap is employed judiciously. If we consider, instead, a more complex
spatiotemporal model of the kind being used in modern air pollution stuBgsiroand others2010),
the time required for a single optimization is an hour or more, so a full parametric bootstrap is essentially
impractical unless its use is restricted to a very limited number of definitive analyses.

We describe a new method termed the “parameter bootstrap” that is a less computationally demandingg
approximation to the parametric bootstrap. The parameter bootstrap is consistent with a decomposition ofs’
the measurement error into 2 approximately independent components, one of which is similar to Berkson £:
error (“Berkson-like”) and the other of which is similar to classical measurement error (“classical-like”).
We develop our methodology in a setting where we use universal kriging to predict the exposure and
where we model the association of interest with linear regression, including the possibility of spatially
correlated residuals. The methodology extends easily to more complex spatiotemporal exposure model
that generalize universal kriging (Banerj@ed others2004;Szpiroand others2010).

In Section2, we introduce notation and formally set out the problem. In Se&jeve characterize the
measurement error by decomposing it into Berkson-like and classical-like components, and in&ection
we define the parametric and parameter bootstraps and briefly review 2 alternative strategies that have bee
proposed in recently published papers. In Sechipwe illustrate our methodology in a simulation study
and compare it to other methods, and in Sec@pwe consider an example with publicly available stream
data from the Environmental Protection Agency (EPA). We conclude in Settigth a discussion.
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2. NOTATION AND PROBLEM SETUP

Consideran association study with ti¢ x 1 vector of observed outcom&s N x 1 vector of exposures
X, andN x m matrix of covariate . Assume a linear regression model

Y = fo+ XBx + Zfz + ¢, (2.1)

with regression coefficient of intereglk. Assume that: is an N x 1 random vector distributed as
N (0, 2. (8,)), for a positive-definite matrix functiol@. (-) andunknown paramete; .
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Inferencefor Bx would be straightforward iK, Y, andZ were all observed. We would estimaig by
ordinaryleast squares (OLS) and then estintatérom the residuals and use a sandwich-basedL.$h§
and Zeger1986). If thes are independent, and we estimétery the method-of-moments, the sandwich
form reduces to the classical SE estimate.

We are interested in the situation whéf@ndZ are observed, but instead Xfwe observe thé&* x 1
vector X* of exposures at different locations* is the number of exposure monitors. Assume Katnd

X* arejointly distributed as
X S n
. )= ’ + « |- 2.2
(X ) (S )“ ('7 ) @2

In this expressionS and S* areknown N x k and N* x k dimensionaimatrices of GIS covariates,
a is an unknowrk x 1 vector of coefficients, and

( : ) ~ N (0, Z (1)) » (2.3)

independenbf ¢, for a positive-definite matrix functiol ,,+)(-) andunknown parametet,. It is useful
to introduce the decomposition

() Ty ()
S = n & ]
() () ( Zpa() () )

Universal kriging is a special casedf comprisedhe range, partial sill, and nugget parameters from
a geostatistical modeCfessie,1993).

Although the exposur& is not observed directly, we can exploit the observed vakiesandthe
spatial model inZ.2) to estimatefx asfollows. First, we estimate the exposure model paramétensd
é,? basedon X* by maximum likelihood or another nonlinear optimization approach, and then we define
the estimated exposure by

W = E(X|X*; &, 0,)
= ®(X*, a,0y,), (2.4)
where A . .
(X", a,0,) = Si + Ty O 210 (X" — S'a).
Since we are interested in frequentist sampling properties of an estimajgy fare take care to specify
the assumed data-generating mechanism. All the geographic locations are fixed and known, as are th
corresponding GIS covariatésand S* andany covariate< in the outcome model. The regression co-

efficients o, fx, fz, anda and variance parametefis andd, areall fixed but unknown. A realization
from the data-generating mechanism is obtained by drawing from the joint distributiomy céinds*.
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3. MEASUREMENT ERROR

If we ignore the measurement error from usilign place ofX, we can derive riae SEs by the procedure
described at the beginning of SectidrHowever, these SEs are based on the assumption that all sampling
variability in Bx is induced byz, and they ignore the additional sampling variability frém= X — W
that is induced by; andz*. Therefore, nive SEs will typically not estimate the true sampling variability
of Bx. In addition to altering the SEs, the measurement error may introduce bias.

We decompose the measurement error into 2 components

U = (X - EX|X*;a,0y) + (E(X|X*; a, 0,) — E(X]|X*; &,9;7))
= UpL + UcL,
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where the Berkson-like component is
UL = X — E(X|X*; , 8)), (3.1)
andthe classical-like component is
UcL = E(XIX*; a,6,) — E(X|X*; &, 0,).

TheBerkson-like componerdg accountdor variability from # and#*, conditional on known exposure
model parameters, and the classical-like compohkit incorporatesadditional variability fromz* in

estimatingthe exposure model parameters. Both of these components change the sampling variance of
ﬁx, and the classical-like component can also introduce bias.

umoq

3.1 Berkson-like component of the error

Assume that the exposure model parameieasidd, areknown so that)g is the only source of mea-
surement error. A primary feature of Berkson error is that it has mean zero conditional on the estimated
exposureN (Carrolland others2006, p. 9). With known exposure model parameters, it is easy to see that
this holds forUg.

E(UgLIW) = E(E(UgL|W)|X")

= E(UgL|X")
= E(X — E(X|X"; , 0,)|X*)
=0.

Thesecond line holds sinc® is deterministic conditional oiX*, the third line is the definition oflg ,
andthe final line holds since andd, arethe parameters in the data-generating mechanisrx for
Since we can rewrite2(1) in the form

Y = fo+ WBx + ZBz + UsLBx + ¢,

it is easy to see thatyx derived by OLS withW in place ofX is unbiased for estimatingx. We verify
this by conditioning o'W, exploiting the fact thaE (Ug [W) = 0, and then taking the expectation %
over the sampling distribution aV. As in the case of Berkson error, the effecld| is to makeW less
variable than the true exposukg effectively adding to the variance of the noise in the outcome model
and resulting in increased variability 8.

It is tempting to carry the Berkson analogy further and argue that we can derive valid SEs by account-
ing for the correlation in the new noise tewh = Ug| Bx + ¢, using either generalized least squares
or the sandwich estimator, as would be appropriate for Berkson error with a nondiagonal covariance
(Gryparisand others2009; Szpiroand others2008; Carroll and others2006, p. 90). This reasoning is
not completely correct, however, because it is based on tred@tiag fixed.
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3.2 Classical-like component of the error

A primary feature of classical measurement error is that it increases the variabi\Nyrefative to X,
introducing variation that is not correlated with the outcoh@Carroll and others2006, p. 28)Uc. is
analogousince it comprises the error from estimating the exposure model parameters, which introduces
variability that is not informative foly. Strictly speakinglUcL is not independent oY sincea andé,7
arederived fromX* which is correlated withX. It is also not independent across locations. Therefore,
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we emphasize thdtlc is similar to classical measurement error but also distinct in important ways, so
we cannot rely on standard measurement error correction techniques like regression calibration.

Our simulation results in Sectidnhsuggest that the dominant effectldg, is to increase the sampling
variability of Ax. The bias in our examples is relatively small, but it has some interesting features and for
completeness we illustrate bias correction using bootstrap methods and discuss the theoretical properties
of bias from this form of classical-like error in the Online Supplement 1 (see supplementary material
available aBiostatisticsonline). One interesting finding is that the bias can be away from the null, rather
than toward the null as in the case of standard classical measurement error.

4. CORRECTION METHODS
4.1 Parametric bootstrap

A natural, but computationally intensive, approach to estimating SEs and correcting bias is the parametric
bootstrap (Davison and Hinkleyt997; Madsenand others 2008). The parameter estimate of interest

Bx is calculated as in Sectiod, and we wish to approximate its sampling distribution under the true
data-generating mechanism. We do this by simulating bootstrap samples under our best estimate of thes.
data-generating mechanism and calculating their empirical distribution. Given a set of obselvatiahs
X*, the parametric bootstrap SE basedvrbootstrap samples is derived as follows:
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e

1. Estimate the exposure model parametﬁewdé,, by nonlinear optimization inZ.2).
2. DeriveW from (2.4) and use it in place of in (2.1) to estimate the outcome model paramefiers

,BA)(, ﬁz, andég.
3. Repeat the steps below foreaghk=-1,..., M

(a) Simulate a new set of observatiorisand X3 basedon the models in4.1) and 2.2), using

&, 0y, Po, Bx, Bz, andd, in place of the unknown true parameters.

(b) Estimate new exposure model paramefgrandd, j by nonlinear optimization based on the
model in @.2), usingX]-" in place ofX*.

(c) Plugaj f,,;, and X into (2.4) to deriveW;.

(d) Calculatefy, j by OLS in (2.1), usingW; andY; in place ofX andY.

4. Calculate the parametric bootstrap SE as the empirical standard deviatiorﬁ’gf ithe

Notethat in step 3(a), we simulafe; in order to obtair;, but we do not use&; in the remainder of
the procedure. See the Online Supplement 3 (see supplementary material avaBaddeadisticsonline)
for additional implementation details.

It is straightforward to usé’x, j to estimate and correct for bias rather than to derive $¥wion
and Hinkley,1997). In principle, we need a nested double bootstrap to rigorously derive a bias-corrected
point estimates and corresponding SEs, but such a procedure can tdduimtstrapsamples which is
very computationally intensive. Since the bias tends to be small in our examples, we approximate a nested
double bootstrap by applying a bias correction and estimating SEs based on the sani bebtstrap
samples, so our SEs do not include the additional variability from bias correction.
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4.2 Parameter bootstrap

The idea of the parameter bootstrap is to decrease the computational burden by eliminating the nonlinear
optimization that is repeatdd times in step 3(b) above. This is feasible because we can typically obtain
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an estimate of the sampling distribution ﬁoandé,, in step (1) without much additional computation. The
procedure differs from the parametric bootstrap in the addition of step 1(a) and modification of step 3(b).

1. Estimate the exposure model parametﬁemdén by nonlinear optimization inZ.2).
(a) Estimate a density functigb(-, -) corresponding to the sampling distribution&oandé .

2. DeriveW from (2.4) and use it in place of in (2.1) to estimate the outcome model paramefiers

Bx. Bz, andé,.
3. Repeat the steps below foreaghk=1,..., M

(a) Simulate a new set of observatiorisand X}‘ basedon the models in4.1) and 2.2), using

&, 0y, Po, Bx, Bz, andd, in place of the unknown true parameters.
(b) Samplei; andén,j from the probability distribution defined bg(-, -).
(c) Plugé;.f,.j, andX} into (2.4) to derivew;.

(d) Calculatefy,j by OLS in (2.1), usingW; andY; in place ofX andY.

4. Calculate the parameter bootstrap SE as the empirical standard deviatiorﬁsa,fjthe
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As described in the Online Supplement 3 (see supplementary material avail&itesttisticonline),
our implementation of step 1(a) uses a Gaussian approximation centered at the maximum likelihood valueg
with covariance based on the estimated Hessian. In the Online Supplement 2 (see supplementary mate9
rial available aBiostatisticonline), we also describe assumptions that underlie validity of the parameter
bootstrap.

4.3 Partial parametric bootstrap
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If we neglect the classical-like error, another alternative is to modify the parameter bootstrap b§ using
ande in each bootstrap sample instead of drawing new values from the estimated sampling distribution 'S S
asin step 3(b). We call this the partial parametric bootstrap. Since the partial parametric bootstrap onIy z
accounts for Berkson-like error, we use it to estimate SEs but not for bias correction.

4.4 Other correction methods

09 U0 Sexa ] Y10

Two alternative methods have been proposed in recently published papers. We describe these approachés
briefly and compare them to our proposed bootstrap methodology in the simulation and data examples<®
that follow. For more details, we refer an interested reader to the cited papers.

Gryparisand otherq2009) andMadsenand otherg2008) propose jointly modeling the exposure and
outcome data in order to estimaﬁg. Since the joint model is multivariate normal given the parameters,
it is possible to write down a joint likelihood and estimate all the model parameters by either maximum
likelihood or Bayesian methods. We show results in a subset of our examples from a joint model fit by
maximum likelihood.

Another approach proposed Bryparisand otherg2009) is to leave out a subset of the monitoring
data for out-of-sample validation and then to use regression calibration to derive bias-corrected effect
estimates. This approach is based on a classical measurement error model, which we and they have shown
does not hold. It also requires fitting the exposure model with only a subset of the available data. The
out-of-sample regression calibration algorithm givenGayparisand others(2009) is for uncorrelated
outcomes, and we implement their algorithm for a subset of our examples with uncorrelated outcomes
under the optimistic assumption that 50 additional validation monitors are available.

9102 '9¢ *q
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5. SIMULATIONS

We conduct a simulation study based on the data we analyze below in S&dfieruse the universal krig-

ing exposure model described above and allow for correlation in the outcome residuals. Iix&600

box, we randomly select locations fdi* = 450exposure monitors and = 100 or 2000 outcome mea-
surements. The andy coordinates are covariates in the universal kriging exposure model with regression
coefficientsa = (—25.95,—0.0035,0.00084), and the spatial correlation has an exponential variogram
structure with range, = 24.13,partial sill y,, = 3.76,and nugget, = 1.34(Cressie1993).

The linear regression model for the outcome conditionaXas (2.1), with 8o = 5.06,8; = —0.322,
and no additional covariates We consider the case of uncorrelated residualith variances? = 0.76,
andwe also consider the case of correlated residaéddlowing an exponential variogram structure with
rangeg, = 80.39,partial sill . = 0.26,and nugget, = 0.50.

In Table1, we summarize the results for 2000 Monte Carlo simulations. Due to the computational
intensity of the parametric bootstrap, we restrict to 100 Monte Carlo runs for these results. Scatterplots
illustrating agreement between parameter bootstrap and parametric bootstrap SEs are shownin Figure
With uncorrelated outcomes,iva SEs that do not correct for measurement error are too small compared

Table 1. Simulation results for universal kriging exposure surface with rapge= 24.13.The columns

give the bias and standard deviation (SD) of the estimates, the mean and mode of the estimated SEs, an

the coverage foB5% Wald confidence intervals (Cls). Results are base@@®0Monte Carlo simula-

tions, except for the parametric bootstrap which is based on 100 Monte Carlo simulations and maximum
likelihood which is based 060 Monte Carlosimulations
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Bias SD SE (mean) SE (mode) 95% Cl Goage
N =100
Independenbutcomes
No correction —0.003 0.075 0.072 0.070 95
Partial parametric bootstrap —0.003 0.075 0.072 0.071 95
Parameter bootstrap 0.000 0.075 0.079 0.074 96
Parametric bootstrap —0.009 0.077 0.079 0.073 98
Regression calibration —0.012 0.104 0.102 0.084 95
Maximum likelihood —0.011 0.081 0.073 0.079 96
Correlated outcomes
No correction —0.004 0.093 0.097 0.085 95
Partial parametric bootstrap —0.004 0.093 0.101 0.097 95
Parameter bootstrap —0.001 0.093 0.105 0.099 96
Parametric bootstrap —0.008 0.099 0.106 0.107 94
N = 2000
Independenbutcomes
No correction —0.002 0.027 0.016 0.016 78
Partial parametric bootstrap —0.002 0.027 0.023 0.023 91
Parameter bootstrap 0.001 0.027 0.028 0.027 96
Parametric bootstrap —0.002 0.027 0.029 0.027 97
Regression calibration —0.010 0.075 0.066 0.045 93
Maximum likelihood 0.000 0.021 0.022 0.022 96
Correlated outcomes
No correction —0.001 0.064 0.068 0.053 94
Partial parametric bootstrap —0.001 0.064 0.073 0.064 95
Parameter bootstrap 0.001 0.064 0.077 0.066 96

Parametric bootstrap —0.008 0.067 0.081 0.065 97
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Fig. 1. Scatterplot showing agreement between parametric bootstrap SEs and parameter bootstrap approximationg
based on 100 Monte Carlo simulations. Partial parametric bootstrap and uncorrected SEs are also included forg
comparison.
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to the observed sampling distribution 8%, resulting in less than nominal coverage for 95% confidence
intervals. The parameter bootstrap consistently gives near nominal confidence interval coverage. There is
some evidence of over-coverage with the parametric bootstrap, but this may be attributable to the smaIIergQ
number of simulations. In the correlated outcome model, the coverageif@r 8&s is closer to nominal.
This is presumably because much of the Berkson-like error appears as additional correlated variability in
the outcome and is accounted for by the sandwich form.

We also show SEs calculated with the partial parametric bootstrap. In scenario®l with100,
the partial parametric bootstrap gives similar results to the parameter bootstrap. This suggests that th
Berkson-like component of measurement error dominates in this situatio™N Eoi2000, however, the
partial parametric bootstrap SEs are significantly smaller, indicating that the classical-like component is
important in that setting.

The bias infx is a very small component of the total error in all scenarios, and it is partially corrected
by the parameter bootstrap. Due to the small number of parametric bootstrap simulations, it is difficult to 5
confirm that this approach provides an effective bias correction, but given the general agreement with the §
parameter bootstrap we expect it to perform similarly. o

We show results for out-of-sample regression calibration and joint maximum likelihood estimation
in Table1 for the cases with uncorrelated outcomes. We do not include cases with correlated outcomes
because the regression calibration methoGiyparisand otherg2009) is not applicable, and the max-
imum likelihood algorithm failed to consistently converge due to difficulty in identifying the covariance
structures between the exposure and outcome variables. Regression calibration results in reasonable cov-
erage probabilities but much larger SEs than the other methods. Joint maximum likelihood estimation also
gives nominal coverage probabilities, with somewhat smaller SEs than the 2-step methods with bootstrap
corrections. We restricted this part of the simulation study to 50 Monte Carlo simulations due to the com-
putational burden (it took on average 8 h to optimize the joint likelihood Wite= 2000, compared to
less than 5 min for the parameter bootstrap).
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Table 2. Simulation results for misspecified variance models. All simulations are fit with an exponential
variogram model, but the data are generated according to either a Gaussian, spherical, or cubic model.
The columns give the bias and standard deviation (SD) of the estimates, the mean and mode of the esti-
mated SEs, and the coverage 8% Wald confidence intervals (CIs). Results are base@@0Monte
Carlo simulations, except for the parametric bootstrap which is basetid@Monte Carlo simulations

and maximum likelihood which is based 8dMonte Carlosimulations

Bias SD SE (mean) SE (mode) 95% Cl Goage
N = 2000

Independenbutcomes g
Gaussian variogram 3
No correction —-0.013 0.021 0.014 0.014 74 g
Partial parametric bootstrap —0.013 0.021 0.020 0.019 90 %
Parameter bootstrap -0.011 0.022 0.024 0.022 95 g
Parametric bootstrap —0.012 0.021 0.023 0.022 95 é’
Regression calibration —0.009 0.048 0.048 0.040 95 s
Maximum likelihood —-0.002  0.017 0.017 0.017 94 8
Spherical variogram %
No correction —0.008 0.026 0.016 0.016 77 3
Partial parametric bootstrap —0.008 0.026 0.022 0.022 91 Q
Parameter bootstrap —0.005 0.026 0.028 0.025 96 g
Parametric bootstrap —0.007 0.025 0.028 0.026 98 o
Regression calibration —0.011 0.062 0.061 0.046 95 3
Maximum likelihood 0.000 0.019 0.020 0.020 96 2
Cubic variogram =
No correction —0.016 0.024 0.015 0.015 71 %
Partial parametric bootstrap —0.016 0.024 0.021 0.021 88 2
Parameter bootstrap —0.013 0.025 0.030 0.025 96 g
Parametric bootstrap —-0.014 0.023 0.026 0.025 94 <
Regression calibration —0.009 0.057 0.054 0.044 95 92~
Maximum likelihood —0.003 0.017 0.018 0.018 96 =]
2
Q
8
S
o)
Finally, in Table2, we illustrate the impact of misspecifying the spatial correlation in the exposure %
model. Other types of model misspecification are also possible, but we focus on the spatial correlation g
in the exposure since it is particularly difficult to know in advance. We consider Gaussian, spherical, and

cubic variogram models, but we assume an exponential model for the purposes of estimation. Ignoring IS
measurement error or using the partial parametric bootstrap results in less than nominal confidence intervals
coverage. The parameter bootstrap and parametric bootstrap give nearly nominal coverage, as do out-of-
sample regression calibration and joint maximum likelihood fitting. As in the case of a correctly specified
model, regression calibration results in much larger SEs, while joint maximum likelihood gives somewhat
smaller standard errors than the bootstrap approaches (at significant computational cost). There is bias
that the bootstrap methods fail to correct, while maximum likelihood estimates are nearly unbiased.

6. EXAMPLE

TheEnvironmental Monitoring and Assessment Program (EMAP) was conducted by the EPA from 1990—
2006 to advance the science of ecological risk assessment and improve the EPAs ability to estimate
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current and future risks to the health of aquatic ecological resoud®&PA monitoring and assessment
program,1999). Previous work has found that there is a strong relationship between local land use and
water quality in nearby streamsiérliny and others 1998). For example, a higher percentage of local
forestation has been found to be associated with improved stream water quality. FolMadisgnand
others(2008), we consider forestation level (log.98x %forestation}1)) as the exposure and analyze

its association with chloride concentrations (lp&q/L)), where elevated chloride concentrations are a
marker for poor stream water quality.

We use EMAP data from the Mid-Atlantic Highlands region of the eastern United States collected
during the years 1993-1998% EPA monitoring and assessment prograf99). Where multiple mea- o
surements are available from different times at the same location, we use the earliest time. The outcomeé
and the exposure are both available at a total 422 of these locations, so based on these locations, we ¢
estimate the coefficient in a linear model without measurement error. Allowing for spatially correlated out- &
comes, we find a highly statistically significant negative association between local forestation and chloride
concentrationsfx = —0.346, SE= 0.025).

At an additional 157 locations, only the chloride concentrations are available. To assess the impact of £
measurement error and our correction methods, we use a universal kriging model (with an exponential 3
variogram and latitude and longitude as covariates) to predict the exposure at these locations and re-ﬁ
estimate the association using the predicted exposures and measured outcomes at 157 locations. T
exposure model parameter estimatessare (—28.91,—0.0037,0.0012) rangeé,7 = 13.92km, partial
sill 1/7,7 = 4.32,and nugget, = 0.48.A map of the respective locations is shown in FigRre

The results are shown in Tate The uncorrected effect estimate-i6.390 with a SE of 0.105, which
is consistent with primarily Berkson-like measurement error since there is little change in the effect es-
timate compared to the case with no measurement error (only a small part of the increased SE can be
attributed to the smaller sample size of 157 instead of 422). The partial parametric bootstrap does notg
change the estimated SE at all, which suggests that the Berkson-like error is nearly pure Berkson error.g
The parameter bootstrap and parametric bootstrap increase the estimated SEs slightly (0.115 and 0.1115
respectively) and estimate little or no bias. Joint maximum likelihood optimization failed to converge
(even after trying 20 random initial conditions) due to difficulty in distinguishing between spatial corre-
lation in the measurement error and the outcome, indicating that joint modeling is not feasible for the
present example.

In conclusion, when we use predicted exposures at stream locations where the true exposures ar
not available, we see statistically significant evidence of a negative association between local forestationg
and stream water quality as measured by chloride concentrations. The SE is inflated by the presence ofo
measurement error, and the correct SE can be estimated at little additional computational cost by the
parameter bootstrap. It turns out that dveaanalysis also gives nearly correct SEs, although we needed
to do the bootstrap analysis to verify this finding.

%1 Ly1oN Jo fis 1‘3 'Sfeudnolpio)xo- Yy wouy

9102 '9¢ Jequiede

7. DISCUSSION

We have characterized the measurement error from using smoothing to predict exposures in environmental
statistics association studies when the exposure and outcome data are misaligned in space. The resulting
measurement error has a Berkson-like component from information lost in smoothing and a classical-like
component that is related to uncertainty associated with estimating the smoothing parameters.

The measurement error structure we have identified is complex because it is a mixture of 2 types of
error, neither one of which fits exactly into the traditional categories of Berkson or classical. Therefore,
standard measurement error correction methods are not appropriate. If we are willing to assume that
the exposure and outcome models are correctly specified, we can use a parametric bootstrap to estimate
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Fig. 2. EPA stream locations, for example, data analysis £ 422 sites with exposure and outcome dita= 157
locations with outcome data only).

bias and standard errors. This requires that we be precise about the assumed data-generating mechanis
since the idea is to draw multiple samples from an approximation to the data-generating mechanism, with
parameters estimated from observed data. We have defined a data-generating mechanism that is consiste
with the geostatistical kriging model we use for smoothing. Although it is well known that geostatistical
methods are useful for interpolating physical processes that arise in environmental statistics, it is not
clear what real-world phenomenon the spatial random effect represents. A promising direction for future
research is to investigate the scientific validity of this and other possible data-generating mechanisms and
to characterize the implications for measurement error correction.

We propose the parameter bootstrap as a less computationally intensive approximation to the paramet-
ric bootstrap. The main assumption required for the parameter bootstrap is that the estimated
sampling distribution for the exposure model parameter estimates be a valid approximation to the true
sampling distribution. In general, this is true for sufficiently rich exposure data, but in some applications,
the available monitoring data are limited. As a computational tool, the parameter bootstrap is hecessary
when estimating the exposure model parameters is computationally intensive, which occurs when there
is a relatively large amount of exposure data. Therefore, the choice between the parametric bootstrap
and the parameter bootstrap should be informed by the amount of exposure data available, considering
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Table 3. Results of estimating the relationship between the log-transformed chloride level (“outcome”)

and the logit-transformed percent local forestation (“exposure”) in streams, using EPA data from the

Mid-Atlantic Highlands region of the eastern United States during the yE288-1996. The true exposure

result is based oA22locations at which both the exposure and outcome data are available. The predicted

exposure results are based on outcomes and predicted exposafgdatations for which exposure data

are not available, with the othe422 locations used to fit the exposure model. The model allows for
spatially correlatecbutcomes

N Bx SE
True exposure 422 —0.346 0.025
Predicted exposure, no correction 157 —0.390 0.105
Predicted exposure, partial parametric bootstrap 157-0.390 0.103
Predicted exposure, parameter bootstrap 157 —0.388 0.115
Predicted exposure, parametric bootstrap 157 —-0.397 0.111

implicationsfor the computational burden of the parametric bootstrap and the validity of the parameter
bootstrap.

In the universal kriging model considered here with 450 exposure monitors, the parametric bootstrap is
marginally feasible, requiring approximately 1 h of computing time for 100 bootstrap samples (compared
to less than 5 min for the parameter bootstrap). One practical compromise is to use the parameter bootstrax
with a larger number of bootstrap samples as the primary correction and to validate it with the parametric &
bootstrap using a limited number of samples. In applications where the exposure model is more complex%

pI0JX0'SONIS 112150 1)//:0NY WO | PaPeo JUMO(]
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(e.g. the spatiotemporal air pollution model describe@hpiroand others2010), a single optimization 8
can take on the order of an hour so the parameter bootstrap’s computational advantage becomes even moé
important. 2

We compared our bootstrap methods to 2 recently proposed altern&@ingsafisand others2009; f
Madsenand others2008). Regression calibration is incompatible with the theoretical properties of the 2
measurement error, and it results in much larger SEs than any of the other alternatives. Joint estimation%
by maximum likelihood performed consistently well, even with a misspecified exposure model and re- 5
sulted in somewhat smaller SEs than bootstrap methods. Howev@ryparisand otherg(2009) point 8
out, the joint estimation methodology can be extremely computationally intensive and can lead to spu- %

rious feedback into the exposure when there are outliers or misspecification in the outcome model. Itis g
also difficult to fit a joint model with spatial correlation in the outcomes, due to the challenge in distin-
guishing this correlation from correlation in the exposure. The parameter bootstrap is a computationally f)
efficient alternative that works well in a wide range of settings, and further research comparing it to 3
the joint modeling approach is needed to determine which is preferable for problems where both are g
feasible.
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