
Biostatistics(2012),13,2, pp.289–302
doi:10.1093/biostatistics/kxr052
Advance Access publication on January 19, 2012

Estimating causal effects of air quality regulations using
principal stratification for spatially correlated

multivariate intermediate outcomes

CORWIN M. ZIGLER∗, FRANCESCA DOMINICI, YUN WANG

Department of Biostatistics, Harvard University,
Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA

czigler@hsph.harvard.edu

SUMMARY

Methodsfor causal inference regarding health effects of air quality regulations are met with unique chal-
lenges because (1) changes in air quality are intermediates on the causal pathway between regulation and
health, (2) regulations typically affect multiple pollutants on the causal pathway towards health, and (3)
regulating a given location can affect pollution at other locations, that is, there is interference between ob-
servations. We propose a principal stratification method designed to examine causal effects of a regulation
on health that are and are not associated with causal effects of the regulation on air quality. A novel feature
of our approach is the accommodation of a continuously scaled multivariate intermediate response vector
representing multiple pollutants. Furthermore, we use a spatial hierarchical model for potential pollution
concentrations and ultimately use estimates from this model to assess validity of assumptions regarding
interference. We apply our method to estimate causal effects of the 1990 Clean Air Act Amendments
among approximately 7 million Medicare enrollees living within 6 miles of a pollution monitor.
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1. INTRODUCTION

Despitethe well-established link between long-term exposure to air pollution and health (Zegerand oth-
ers, 2008;Popeand others,2009), understanding of how air quality regulations causally affect health
outcomes is still evolving. Despite the heightened interest on the part of the US Environmental Protec-
tion Agency (EPA) and other stakeholders, methods for conducting health outcomes research in air quality
management (also called “accountability research”) are scarce, especially for large-scale regulatory strate-
gies that target the entire nation and are expected to have subtle effects on pollution and health unfolding
over several years (Chayand others, 2003;Health Effects Institute,2010).

One reason for the sparse literature on long-term accountability research is the presence of sev-
eral unavoidable challenges. First, because the health outcomes thought to be influenced by exposure
to air pollution can also be affected by other factors (e.g. advances in medical care), it is difficult to
determine the extent to which postregulation changes in health are indeed caused by the regulation, as
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opposedto being affected by concurrent trends in factors unrelated to the regulation. Second, the con-
sequences of a regulation may extend beyond effects on ambient air pollution, presenting the challenge
of parsing regulation effects on health that are associated with improvements in air quality from reg-
ulation effects on health that are due to other regulation-induced changes such as changes in behavior
or in economic activity. Finally, although large-scale regulations typically target one specific pollutant,
they likely affect sources that emit multiple pollutants that may interact in complex ways to impact
health.

Facing these challenges, we develop a framework for accountability research designed to distinguish
causal regulation effects on health that are associated with causal regulation effects on air quality from
causal regulation effects on health that are associated with other causal pathways. Viewing pollution mea-
sures as intermediates on the causal pathway between regulation and health implies that standard statistical
adjustments entail conditioning on a posttreatment concomitant variable, which has been shown to distort
estimation of causal effects (Rosenbaum,1984). Alternatively, our proposed method is predicated on the
potential outcomes method of principal stratification (Frangakis and Rubin, 2002), which allows us to
determine whether regulation-induced improvements in health are most pronounced in locations where
the regulation also reduces pollution.

The methodological contributions of this article are designed to address several fundamental chal-
lenges in accountability research for air quality regulations. First, while existing methods for principal
stratification appear in settings where the intermediate variable is univariate, we provide an extension to
accommodate a continuously scaled multivariate intermediate response vector. This extension to a mul-
tipollutant approach is particularly germane in light of recent reports of the National Research Council
and other research groups that have questioned whether current approaches that establish regulations
separately for individual pollutants are adequately protective of population health and recommended the
development of multipollutant approaches (National Research Council Committee on Air Quality Man-
agement in the United States, 2004;Dominici and others, 2010).

Another methodological contribution of this article is the integration of recent methods for model-
ing point-referenced spatial data into potential outcomes methods for causal inference. Specifically, we
capitalize on the spatially correlated nature of air pollution and incorporate a spatial hierarchical model
that allows prediction of unobserved potential pollution concentrations based in part on relationships with
pollution in surrounding locations. Viewing pollution as correlated across locations reflects a belief that
regulations in a given location could affect pollution in nearby locations, that is, it reflects a violation of
the standard “no interference” or stable unit treatment value assumption that typically underlies potential
outcomes approaches (Rubin,1980). To our knowledge, ours is the first application of spatial models to
potential outcomes methods for causal inference.

The regulatory action we examine in this article is a particular feature of the 1990 Clean Air Act
Amendments (CAAA) that induced the EPA to designate areas in violation of the National Ambient
Air Quality Standards (NAAQS) as “nonattainment,” inducing these areas to take actions to improve
air quality. We use our proposed methodology to estimate the causal effects of the 1991 nonattainment
designations for particulate matter with aerodynamic diameter<10μm (PM10) on ambient concentrations
of both PM10 andozone (O3) during the period 1999–2001 and on all-cause mortality in the Medicare
population in 2001.

Section2 of this paper describes the CAAA and the construction of a data set linking information
from several national sources. Section3 addresses the assumptions pertaining to interference, formalizes
the use of principal stratification as a framework for conducting accountability research, and extends the
ideas to accommodate multivariate intermediate outcomes. Section4 presents our modeling strategy for
air pollution and health outcomes, including specification of the multivariate spatial hierarchical model
for pollution concentrations. Section5 details our Bayesian estimation strategy, and Section6 summarizes
results from using our method for the CAAA. We conclude with a discussion.
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2. THE CAAA AND DATA FOR ACCOUNTABILITY RESEARCH

As a consequence of the CAAA, the EPA (in 1991) designated counties as “nonattainment” with regard
to the 1987 NAAQS for PM10 if (1) at least one pollution monitor in the county indicated a violation of
the NAAQS for PM10 duringthe years 1987–1989 or (2) part of the county was thought to contribute to a
violation of the NAAQS for PM10 in another area during 1987–1989. County nonattainment designations
compelled states to implement strategies to achieve the NAAQS by the end of 2001. We refer to locations
in nonattainment counties as “regulated.” All other counties are considered in attainment and we refer to
these counties as “unregulated,” as no specific air quality actions were required.

To characterize causal effects of the 1991 nonattainment designations on pollution and health, we
focus on 3-year average ambient concentration of PM10 andO3 duringthe period 1999–2001 and on all-
cause mortality in 2001 among Medicare beneficiaries living in the vicinity of an air pollution monitor.
To this end, we compile data from several national sources. From the EPA Air Quality System (AQS)
database, we obtain 3-year average ambient concentrations of PM10 and O3 during the preregulation
period (1987–1989) and the 3 years leading up to the target date for attainment of the NAAQS (1999–
2001). From the Center for Medicare and Medicaid Services Medicare enrollee file, we obtain all-cause
mortality information in 2001 for all Medicare enrollees living within 6 miles of a pollution monitor, as
well as basic demographic characteristics such as age, gender, and ethnicity. From the 2000 US Census,
we obtain county-level demographic characteristics such as population size and income characteristics.
From the Centers for Disease Control and Prevention Behavioral Risk Factor Surveillance System, we
obtain county-level smoking rates in 2000. Table1 summarizes the available data.

The observational units of the analysis are the locations of air pollution monitors in AQS having
data available for PM10 and/orO3 during either the pre- or postregulation years. We used volume 56,
number 51, of the US Federal Register to determine which of these monitors fell within initial PM10

Table 1. Summary of data available for accountability assessment of theCAAA

Source Data Spatial resolution Year(s)
EPA Preregulation PM10†,‡,

preregulation O3†,‡
Monitor 1987–1989, 1999–2001

postregulation PM10,
postregulation O3

USFederal Register PM10 attainmentstatus County 1991
Center for Medicare All-cause mortality, age†, ‡, Individual beneficiary 2001
and Medicaid Services sex†, ‡, race/ethnicity‡

Centers for Disease
Control and Prevention
Behavioral Risk
Factor Surveillance
System

Smoking rate†, ‡ County 2000

Census Population†, ‡, %urban†,‡,
5-year migration†, ‡,

County 2000

median income†, ‡, %high
school grad†, ‡,
%female†, ‡, race/ethnicity†

†denotesvariables included as covariates in the model for air pollution.
‡denotes variables included as covariates in the model for mortality.
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Fig. 1. Map of the monitor locations for PM10 and O3 used to estimate the causal effects of the CAAA.

nonattainment areas. Next, we determined all Medicare enrollees living in US zip codes having geographic
centroids within a 6-mile radius of a pollution monitor and assigned these enrollees pollution exposure
measured from that monitor. We restrict the analysis to monitor locations in the western United States hav-
ing at least 50 Medicare enrollees because almost all initial PM10 nonattainment areas fell in this region.
The resulting data set consists of ambient pollution measurements at 362 pollution monitor locations (of
which 200 lie in regulated counties), county-level characteristics on 140 counties, and basic characteristics
and mortality information for 6 926 338 Medicare beneficiaries. Figure1 displays the monitor locations.

3. POTENTIAL OUTCOMES AND MULTIDIMENSIONAL PRINCIPAL STRATA

For any hypothetical allocation of nonattainment designations, letA ≡ [ A(si )]ni =1 be the vector of indi-
cators denoting whether each ofn = 362 locations would fall in a nonattainment county, withA(si ) = 1
denoting nonattainment for thei th location. Note that there arenc = 140 counties, and that all locations
within a county have the same designation. We refer to the entire vectorA as a regulation program, and
note that, at least hypothetically, there are 2nc different possible regulation programs of which only one is
observed. We denote a specific regulation program withA = a and the observed program for the CAAA
with A = aobs. Furthermore, letRaobs

andUaobs
respectively denote the set of 200 regulated and 162

unregulated locations under the programA = aobs. Our goal was to estimate causal effects of a regulation
program that enacts regulations in all locations versus a program that enacts regulations in no locations.
For simplicity, we denote these programs withA = 1,0, respectively.

Let Ya(s) denote the number of deaths in 2001 (10 years postregulation) at locations that would
potentially occur under regulation programA = a. Let Xa(s) denote theq-dimensional vector of average
concentrations ofq pollutants that would potentially be observed during 1999–2001 under regulation
programA = a. Our analysis of the CAAA considersq = 2, representing concentrations of PM10 and
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O3. Note that the only observed potential outcomes are(Xaobs(s), Yaobs(s)); all others are considered
missing data. Throughout, we useZ(s) to denote time-invariant and location-specific covariates.

3.1 Assumptions about interference between locations

Mortality outcomes and pollution levels are only observed under the programA = aobs. Therefore, we
require assumptions to relate observed potential outcomes to those that would have been observed under
programsA = 0,1. Typically, this would be achieved with the assumption of no interference between
observational units (or SUTVA), which states that potential outcomes for a given location are unrelated
to regulation designations of all other locations. This assumption implies that there are exactly 2 sets of
potential outcomes for each location: pollution and mortality if that location is regulated and pollution
and mortality if that location is unregulated. Thus, with no interference, potential outcomes under any
hypothetical programA = a could be considered on a location-by-location basis, with(Xa(s), Ya(s)) =
(Xaobs(s), Yaobs(s)) aslong asa andaobs entailthe same regulation status for locations.

In studies of air pollution, however, the assumption of no interference does not likely hold because
regulations at a given location likely impact air quality at nearby locations. Thus, knowing the observed
potential outcomes at locations underA = aobs doesnot imply knowledge of the potential outcomes un-
der any otherA = a because potential outcomes fors can differ when regulations are allocated differently
to other locations. In fact, with no assumptions regarding interference, potential outcomes for each loca-
tion are distinctly defined for each of the 2nc different possible regulation programs because changing the
regulation designation of any location could impact potential outcomes at all other locations.

We liken investigation of the CAAA to previously considered problems of “partial interference”
(Sobel,2006) where observations within a clearly defined group (e.g. residents of a particular neigh-
borhood) interfere with one another, but observations in different groups (e.g. residents of distant neigh-
borhoods) do not. Unlike previously considered partial interference settings, there are no clearly defined
interference sets for analyzing the CAAA (e.g. assuming no interference between locations in different
counties might be too restrictive, especially for observations near county borders). We argue that a unique
feature of the CAAA is that nonattainment designations were “assigned” with some implicit regard to in-
terference because one criterion for a nonattainment designation was contribution to an NAAQS violation
in a nearby area. That is, if weather patterns or mere proximity led pollution in one location to affect pol-
lution in another location, the EPA ensured that these 2 locations shared the same regulation designation.

We adopt what we term the “assignment group interference assumption (AGIA)” to reflect the notion
that locations withinRaobs

do not interfere with those inUaobs
. Thus, changing the regulation designa-

tion of any location inUaobs
would not change the potential outcomes of locations inRaobs

(andvice
versa). A consequence of this assumption is that(X1(s), Y1(s)) = (Xaobs(s), Yaobs(s)) for s ∈ Raobs

and

(X0(s), Y0(s)) = (Xaobs(s), Yaobs(s)) for s ∈ Uaobs
. Figure2 graphically depicts the implication of AGIA.

In practice, this assumption implies that, in all locations observed to be regulated (Raobs
), observed poten-

tial outcomes are the same as those that would have been observed if the EPA had additionally regulated
all other locations. Analogously, AGIA also implies that in all unregulated locations (Uaobs

), observed
potential outcomes are the same as those that would have occurred if the EPA had regulated no locations.
We discuss assessment of this assumption in Section4.3.

3.2 Regulation ignorability assumption

In addition to AGIA, we assume that the EPA regulation designations are strongly ignorable conditional on
covariates. In other words, there is no unmeasured confounding in the sense thatZ(s) contains all factors
that tend to differ between regulated and unregulated locations and that also impact potential pollution
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Fig. 2. Structure of potential outcomes for different regulation programs under the AGIA. Points represent monitor

locations in counties contained in portions of California and Arizona. (a)A = aobs. The observed regulation program

determinesUaobs
andRaobs

. All pollution and mortality outcomes are observed under this program. (b)A = 0.

Pollution and mortality outcomes are observed for locations inUaobs
and unobserved for those inRaobs

. (c) A = 1.

Pollution and mortality outcomes are observed for locations inRaobs
and unobserved for those inUaobs

.

and mortality outcomes. Note thatZ(s) will include preregulation pollution measurements from year(s)
before the designations that are used in the EPA decision process, as well as demographic characteristics
of the population surrounding locations (see Table1). Note that this assumption is unverifiable, and
that employing any causal inference method with observational data requires some form of ignorability
assumption. We revisit this assumption in Section7.

3.3 Principal strata and principal causal effects

We confine attention to the regulation programsA = 0 andA = 1 and define the monitor-level causal
effect of A on thekth pollutant as the comparison between the potential pollution concentration of that
pollutant under the regulated program, [X1(s)]k, and the potential concentration of that pollutant under
the unregulated program, [X0(s)]k. We similarly define the causal effect of regulation on mortality for
locations as the comparison betweenYr

1 (s) andYr
0 (s), whereYr

a (s) denotes the mortality rate per 1000
Medicare beneficiaries.

Principal strata are defined by the joint vector of potential pollution concentrations for allq pollutants
under both possible regulation programs,(X0(s), X1(s)) (e.g. the regulated and unregulated concentra-
tions of both PM10 and O3). A location’s principal stratum indicates the causal effect of the regulation on
pollution for that location; strata with [X0(s)]k = [X1(s)]k for k = 1, . . . ,q represent locations where
regulation does not causally affect air pollution, while strata with [X0(s)]k 6= [X1(s)]k for at least onek
represent locations where regulation causally affects at least one pollutant. Causal regulation effects on
mortality within principal strata (or unions of principal strata), called “principal effects,” can indicate the
extent to which regulation effects on mortality coincide with regulation effects on pollution.

Towards this end, we use principal stratification to define regulation effects on mortality as associative
or dissociative with regulation effects on pollution. An “associative effect” is a causal regulation effect on
mortality in locations where there is a causal regulation effect on pollution. A “dissociative” effect is a
causal regulation effect on mortality in locations where there is no causal regulation effect on pollution.
To formally extend these definitions to settings with multivariateXa(s), defineK to be a subset of theq
pollutants, which could represent an individual pollutant or any combination of pollutants. For example,
in our application withq = 2,K can be{PM10}, {O3}, or {PM10, O3}. We defineK-associative effects as
mortality comparisons within strata where the regulation causally affects the pollutant(s) inK, that is, as
comparisons betweenYr

1 (s) andYr
0 (s) in strata where [X0(s)]K 6= [X1(s)]K. Similarly,K-dissociative ef-

fects are defined as comparisons betweenYr
1 (s) andYr

0 (s) in strata where the regulation does not causally
affect the pollutant(s) inK, that is, in strata with [X0(s)]K = [X1(s)]K.
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In general, average causal effects on mortality can be defined for any combination of principal strata.
In order to characterize average dissociative and associative effects in practice, interest may lie in average
effects on mortality in (a) locations where the regulation does not meaningfully affect pollution and (b)
locations where the regulation meaningfully reduces pollution. To summarize such quantities, we define
expectedK-dissociative effects (EDEK) and expectedK-associative effects (EAEK) as:

EDEK = E[Yr
1 (s) − Yr

0 (s)
∣
∣|[X0(s)]K − [X1(s)]K)| < CD

K ], (3.1)

EAEK = E[Yr
1 (s) − Yr

0 (s)
∣
∣([X0(s)]K − [X1(s)]K) > CA

K], (3.2)

whereCA
K denotesa vector of thresholds beyond which a change in each pollutant inK is deemed scientifi-

cally meaningful, andCD
K is a vector of thresholds below which changes in these pollutants are considered

inconsequential. The> and< signs represent component-wise comparisons between vectors. For exam-
ple, withK = {PM10, O3}, EAEK couldestimate the average causal effect on mortality in locations where
the regulation-induced reduction of PM10 exceeds 4μg/m3 andthe regulation-induced reduction on O3
exceeds 0.005 ppm.

LargeK-associative effects relative to smallK-dissociative effects would indicate that the regulation
has the strongest effect on mortality in locations where the regulation causes improvements in air qual-
ity. K-associative andK-dissociative effects of equal magnitude wound indicate that the regulation effect
on mortality is the same regardless of whether the regulation improved air quality, which would sug-
gest some important causal pathways through which the regulation impacts mortality without reducing
pollution.

4. MODELS FOR AIR POLLUTION AND MORTALITY

Conditionalon observed covariates,Z(s), we factor the joint density of all potentially observable quan-
tities at each location as a model for air pollution and a model for mortality conditional on pollution:
f (X0(s), X1(s)|Z(s)) f (Y0(s), Y1(s)|X0(s), X1(s), Z(s)). Note that without further assumptions, a model
for this full joint density will not be identified from observed data because of the lack of information on
the following pairwise associations between quantities that are never jointly observed at the same location:

(Ai) Pollution under opposite regulations: [X0(s)]k, [X1(s)]k′
∣
∣Z(s) for k = 1, . . . , q andk′ = 1, . . . , q.

(Aii) Mortality counts under opposite regulations:Y0(s), Y1(s)
∣
∣Z(s), X0(s), X1(s).

(Aiii) Mortality counts under a given regulation and pollution under the opposite regulation:Ya(s), Xa′(s)∣
∣Z(s), Xa(s) for a,a′ = 0,1 anda 6= a′.

Resultingfrom the lack of observed data pertaining to these associations, modeling the full joint density
requires assumptions pertaining to the associations in(Ai)–(Aiii). We put forward one set of assumptions.

4.1 Spatial hierarchical model for air pollution

For f (X0(s), X1(s)|Z(s)), we propose the following spatial hierarchical model:

X(s) = ZT (s)β + W(s) + ε(s), (4.3)
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where X(s) = (XT
0 (s), XT

1 (s))T is the 2q-dimensional vector of potential pollution concentrations (q
pollutants under each of 2 regulations),W(s) is a vector of spatially varying random intercepts, andε(s)
represents nonspatial “nugget” error (e.g. measurement error). We assumeε(s) ∼ MVN(0, 9) and9
diagonal.ZT (s) is a 2q × p matrix of time-invariant covariates, wherep = 6k pk and pk is the number
of covariates pertaining to thekth pollutant at locations (including an intercept).

The spatial correlation structure follows from specifyingW(s) as a realization from a multivari-
ate Gaussian Process with cross-covariance functionK (si , sj ; ν) being the 2q × 2q matrix of covari-
ances between the 2q potential pollution concentrations measured at locationssi andsj . For example,
[K (si , sj ; ν)]1,2 denotesthe covariance between PM10 at locationsi andO3 at locationsj , both under
A = 0, and [K (si , sj ; ν)]2,3 denotesthe covariance between O3 at locationsi underA = 0 andPM10
at location sj underA = 1. The parameterν = (ν1, . . . , ν2q) indexes functions that characterize the
spatial decay of correlations between pollution measurements across space. Note that wheni = j ,
K (si , sj ; ν) = K (s, s) is in fact a covariance matrix characterizing the relationships among the 2q poten-
tial pollution concentrations within a location.

The mechanics of model (4.3) rely on separatingK (si , sj ; ν) into 2 distinct features: (1)K (s, s) and
(2) functions for the decay of correlations between each pollution concentration across space. Decom-
posing the cross-covariance in this way yields computational feasibility for model (4.3), but it also has
the nice feature that it isolates the part of the model representing the nonidentifiable associations between
pollution measurements under opposite regulation programs, that is, the associations in(Ai). Specifically,
theq × q diagonal blocks ofK (s, s) represent the relationships among pollutants under the same regu-
lation and are identified from observed data. The off-diagonal blocks ofK (s, s) represent relationships
among pollutants measured under opposite regulations within a location (i.e. betweenX0(s) andX1(s)).
Theseoff-diagonal blocks are nonidentified from observed data and will be specified with a sensitivity
parameter in the next section. For the second feature ofK (si , sj ; ν) capturing the spatial decay of corre-
lations across space, we assume isotropic exponential correlation functions that depend on the Euclidean
distance between locationssi andsj (||si − sj ||), with ρk(si , sj ) = e−νk||si −sj ||, for k = 1, . . . ,2q. The
νk will be informed by observed data and have important implications for AGIA because they determine
the estimated correlation between measurements at different locations. Details of this model specification
appear in Appendix A of the supplementary material available atBiostatisticsonline and also inBanerjee
and others(2008).

4.2 Sensitivity parameter for the associations between pollutants under opposite regulations

To isolate the nonidentifiable quantities in model (4.3), write: K (s, s) =
(

600 0
0 611

)
×
(

�00 �01
�01 �11

)
×

(
600 0

0 611

)
, where6aa representsa q × q diagonal matrix of standard deviations and�aa representsa

correlation matrix forq pollutants measured at the same location under programA = a, all of which are
informed by observed data. Theq × q matrix �01 representsthe nonidentified correlations betweenq
pollutants measured at the same location under opposite designations, pertaining to association(Ai).

We adopt a strategy that specifies�01 andvaries this specification to assess sensitivity to assumptions
about these nonidentifiable associations. Specifically, we define theq × q matrix �avg, the entries of
which are the averages of the values from the corresponding observable entries of�00 and �11, and
set�01 = ω × �avg, whereω is a scalar-valued sensitivity parameter. This strategy implies that the
correlation between the same pollutant under opposite regulation programs isω, and that the correlation
between different pollutants under opposite programs is an attenuated (by a factor ofω) version of the
correlation observed separately under each program. For example, if the correlation between PM10 and
O3 observed inUaobs

is 0.4, and the analogous correlation observed inRaobs
is 0.6, then this specification

implies that the assumed correlation between PM10 underA = 0 andO3 underA = 1 is ω × 0.4+0.6
2 .
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4.3 Interference and the spatial model

High values ofν from K (si , sj ; ν) represent fast spatial decay, implying correlations only among potential
pollution measurements at nearby locations, whereas low values ofν represent slow spatial decay. Values
of ν that suggest correlation between locations inRaobs

andUaobs
would suggest a possible violation

of AGIA because there would be correlation among pollution at locations assumed to not interfere. For
example, ifν implies that observations locatedd units apart remain correlated and if any location inRaobs

is located withind units of a location inUaobs
, then there is evidence of a violation of AGIA.

4.4 Log-linear model for mortality

For f (Y0(s), Y1(s)|X0(s), X1(s), Z(s)), we make use of 2 assumptions regarding the associations in(Aii)
and(Aiii). In regard to(Aii), we assume conditional independence of potential mortality outcomes, condi-
tional on covariates and air pollution:Y0(s) ⊥⊥ Y1(s)

∣
∣X0(s), X1(s), Z(s). Estimates of EDEK andEAEK

thatpertain to average mortality rate differences are expected to be robust assumptions about the associa-
tion betweenY0(s) andY1(s). Regarding(Aiii), we assume that under a given regulation, after condition-
ing on pollution under that regulation (and covariates), mortality outcomes are independent of pollution
under the opposite regulation:f (Ya(s)

∣
∣X0(s), X1(s), Z(s)) = f (Ya(s)

∣
∣Xa(s), Z(s)), for a = 0,1. This

assumption reflects a belief that knowledge of both(X0(s), X1(s)) doesnot contribute any information
pertaining toYa(s) above and beyond that contained inXa(s) alone.As a result of these assumptions,
we write f (Y0(s), Y1(s)|X0(s), X1(s), Z(s)) =

∏1
a=0 f (Ya(s)|Xa(s), Z(s)) andmodel the terms of this

product with the following log-linear models:

log(E[Ya(s)]) = αa
0 + ZT (s)αa

1 + Xa(s)α
a
2 + log(N(s)), (4.4)

wherea = 0,1, N(s) is the total number of Medicare enrollees living near locations, αa
1 capturesmor-

tality relative risks associated with differences inZ(s) under regulation programA = a, andαa
2 captures

mortality relative risks associated with differences in postregulation ambient pollution concentrations un-
der regulation programA = a.

5. BAYESIAN ESTIMATION

Recallthat X(s) = (X0(s)T , X1(s)T )T andlet Y(s) = (Y0(s)T , Y1(s)T )T . The full joint density of the
data can be written as:

f (X, Y, Z) =
∫ n∏

i =1

f (Z(si ), X(si ), Y(si )
∣
∣θ)p(θ) dθ, (5.5)

whereθ is a generic parameter with prior distributionp(θ). Distinguishing between the missing (mis) and
observed (obs) quantities inX(s) andY(s), the posterior distribution ofθ is proportional to:

p(θ) f (Z)

∫ ∫ n∏

i =1

f (Xmis(si ), Xobs(si ), Ymis(si ), Yobs(si )
∣
∣Z(si ), θ) dYmis(si ) dXmis(si ). (5.6)

Inference from (5.6) is difficult because of the integration over missing potential outcomes, leading us to
focus instead on the following joint posterior distribution:

p(θ, Xmis, Ymis∣∣Xobs, Yobs, Z) ∝ p(θ)

n∏

i =1

f (Xmis(si ), Xobs(si ), Ymis(si ), Yobs(si )|Z(si ), θ), (5.7)
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which is convenient for its proportionality to the standard posterior distribution ofθ had all the potential
outcomes been observed (Jin and Rubin, 2008). Thus, our computational strategy consists of a Monte
Carlo Markov chain (MCMC) data augmentation algorithm that iteratively samples missing potential out-
comes conditional on observed data and parameters, then samples parameters and calculates the EDEK
andEAEK conditionalon “complete” data with identified principal strata. Appendix A of the supplemen-
tary material available atBiostatisticsonline contains details of our MCMC strategy.

6. ACCOUNTABILITY RESEARCH FOR THECAAA

We apply our method to analyze the CAAA and estimate causal effects of the 1991 EPA nonattainment
designations on average ambient concentrations of PM10 andO3 (q = 2) during the period 1999–2001 and
on all-cause mortality in the Medicare population in 2001. We use model (4.3) with Xa(s) representing
log-transformedpotential pollution concentrations and considerZ(s) to be the same for each pollutant and
under both regulations. We model the mortality outcomes using the model defined in (4.4). The variables
included inZ(s) for the pollution and mortality models are denoted in Table1.

Analysis of the CAAA entails 3 types of missing data. First are the unobserved potential pollution
and mortality outcomes. Second are missing pollution outcomes in 1999–2001 that result from having
colocated monitors for PM10 andO3 for only 108 monitor locations. All these missing outcomes are im-
puted throughout the MCMC, with uncertainty propagated into estimates of causal effects. Finally, we are
confronted with pollution monitors that were not in operation during the 1987–1989 period, yielding 179
missing preregulation PM10 concentrationsand 228 missing preregulation O3 concentrations.Since these
are important baseline covariates in our analysis, missing preregulation pollution concentrations were
imputed from a 2D spatial model analogous to (4.3) fit to observed pollution values during 1987–1989
without the complication of potential outcomes or nonidentifiable associations. These imputed covariate
values are treated as fixed for our analysis.

We allow different nugget errors (9) and spatial decay parameters (ν) for PM10 andO3 but assume
that, for a given pollutant, these quantities are the same underA = 0 andA = 1. For the sensitivity param-
eter characterizing the within-location correlation between the same pollutant measured under opposite
regulation programs, we considerω = (0.0,0.3,0.6,0.9). Details of the prior specification appear in
Appendix A of the supplementary material available atBiostatisticsonline, and an analysis using simu-
lated data appears in Appendix B of the supplementary material available at Biostatistics online to illus-
trate proof of concept.

6.1 Results

The estimated overall average causal effect of the regulation program on mortality was 1.76 fewer deaths
per 1000 Medicare beneficiaries after adjusting for the aforementioned covariates with a Poisson regres-
sion model (posterior mean [sd] deaths/1000: 63.41 [0.29] vs. 65.17 [0.34]). However, our proposed
method estimated that this regulation effect on mortality was due in large part to causal pathways not
involving average ambient concentrations of PM10 and/orO3 duringthe period 1999–2001. The threshold
valuesCA

K, CD
K definingmeaningful changes in pollution concentrations are 4, 4 forK = {PM10}; 0.005,

0.005 forK = {O3}; and (4, 0.005), (4, 0.005) forK = {PM10, O3}. These values ofCA
K, CD

K werechosen
to represent roughly 10% of the average pollution concentrations in 1987–1989.

Posterior summaries of all model parameters appear in Appendix C of the supplementary material
available atBiostatisticsonline. To summarize regulation effects, Figure3 examines estimated causal
effects on mortality as a function of estimated causal effects on air quality. The size and plotting symbol of
the points indicate the magnitude and direction of the estimated causal effect on mortality for each location
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Fig. 3. Depiction of causal effects on mortality as a function of causal effects on pollution forK = PM10 andK =
O3 for ω = 0.6. Values ofXa(s) represent observed or posterior predictive mean values. Size and plotting symbol of
point indicates the posterior mean causal effect on mortality for that location. Points in shaded area represent areas
with [X0(s)]K − [X1(s)]K < CD

K . (a)K = {PM10} and (b)K = {O3}.

(Yr
1 (s) − Yr

0 (s)). The shaded region represents a causal effect on air pollution below the thresholdCD
K ,

meaning that points lying in the shaded region represent locations that are estimated to have essentially no
casual effect on the pollutant inK. The area below the shaded region represents a causal effect on pollution
in excess of the thresholdCA

K, meaning that points lying below the shaded region represent locations where
we estimate a meaningful causal reduction in pollution. This illustration uses mean posterior predictive
values of unobserved potential outcomes for the analysis withω = 0.6. Analogous plots for other values
of ω were similar and are not pictured.

ForK = {PM10}, we see in Figure3(a) that points within the shaded area tend to indicate a decrease
in mortality, that is, the regulation reduces mortality when it does not causally effect PM10 (negative
dissociative effect). Similarly, we see that points below the shaded area also tend to indicate decreases
in mortality, indicating that the regulation reduces mortality when it causally reduces PM10 (negative
associative effect). A similar pattern is evident in Figure3(b) forK = {O3} but with points more evenly
dispersed along the line [X0(s)]K = [X1(s)]K (shaded area).

Figure4 shows boxplots of posterior distributions of EDEK and EAEK across different values of the
sensitivity parameter. ForK = {PM10}, the similar magnitude of the associative and dissociative effects
suggests that the regulation caused a similar decrease in mortality regardless of whether the regulation
decreased the average ambient concentration of PM10 during 1999–2001. ForK = {O3}, estimates of
EAEK and EDEK appear more sensitive to assumptions aboutω, with the dissociative effect always es-
timated to be slightly more pronounced than the associative effect, although both effects are estimated
near 0. ForK = {PM10, O3}, the analyses withω = 0.6 or 0.9 estimate more pronounced associa-
tive effects than dissociative effects, with EDEK = −0.95 or−1.31 and EAEK = −1.29 or−1.88
deaths per 1000 Medicare beneficiaries. This provides some evidence that the regulation causally reduced
mortality most when it causally reduced average ambient concentrations of both PM10 and O3 during
1999–2001.
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Fig. 4. Posterior summaries of EDEK and EAEK for different values of the sensitivity parameter (ω). (a)K = {PM10},
(b)K = {O3}, and (c)K = {PM10, O3}.

To assess AGIA, we use posterior estimates ofν to compute the estimated correlations between pol-
lution at locations inUaobs

and pollution at locations inRaobs
. Using the lowest estimate ofν for each

pollutant (from analyses with differentω), we found correlations>0.25 between 30 (54) PM10 (O3) mea-
surements at locations in different interference sets. Thus, there is evidence of a violation of AGIA, but
relatively, few locations exhibit correlations greater than 0.25. Further detail of the assessment of AGIA
appears in Appendix D of the supplementary material available atBiostatisticsonline.

6.2 Additional sensitivity analyses

Appendix E of the supplementary material available atBiostatisticsonline provides additional detail of
our treatment of missing outcome and covariate data. We found that our model for covariate imputation
yielded reasonable out-of-sample predictions for preregulation pollution. We also calculated EDEK and
EAEK using only locations with observed preregulation pollution. This analysis suggested very similar
results forK = {PM10} and more pronounced effects on health forK = {O3} andK = {PM10, O3},
with all estimates exhibiting increased uncertainty. Appendix F of the supplementary material available
at Biostatisticsonline investigates sensitivity to the choice ofCD

K andCA
K and indicates that substantive

conclusions are fairly robust to the choice of these thresholds.

7. DISCUSSION

We have provided an innovative causal inference framework for estimating the health effects of air pollu-
tion regulatory actions. Amid the growing demand for a shift from a single pollutant to a multipollutant
approach, we extended existing methods for principal stratification to accommodate a continuously scaled
multivariate intermediate response vector. We also introduced what we believe to be the first application
of potential outcomes methods for causal inference in settings with spatially correlated data.

Our analysis of the CAAA estimated that 1991 nonattainment designations for PM10 did causally
reduce Medicare mortality in 2001, and that there are important causal pathways through which this ef-
fect occurred without affecting average ambient concentrations of PM10 or O3 during 1999–2001. Other
pollution measures (e.g. average daily maximum) and other time periods deserve investigation, and this
analysis is not without limitations. As with any causal analysis with observational data, the possibility
of unmeasured confounding persists. Our results are predicated on the belief that after adjusting for
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demographic characteristics in 2000–2001 (see Table1) and preregulation pollution levels, there are
no unmeasured factors relevant to air quality and mortality that differ systematically between attain-
ment and nonattainment areas. Strategies to collect additional data, possibly at a finer spatial or res-
olution or with better temporal alignment, would bolster confidence in the ignorability assumption of
Section3.2.

In order to estimate causal effects of a program that would regulate all areas versus a program that
would regulate no areas, we made use of an assumption about interference, namely, AGIA. However,
our estimates can be viewed as approximate in the sense that there is evidence of a violation of AGIA,
although relatively few locations suggest a substantial violation. Furthermore, we used a relatively re-
strictive (exponential) spatial decay function that was indexed by a single parameter, but more flexible
(e.g. anisotropic) spatial covariance functions could provide better fit to pollution data and should be ex-
plored. To ease interpretability, we also incorporated a single sensitivity parameter (ω) to characterize
nonidentifiable pollution correlations but additional sensitivity parameters could be included.

Finally, the data used for our analysis entail limitations that are often unavoidable when combining
heterogenous data sources on a large scale. With limited individual-level data, we must rely on aggregate
summaries at different spatial resolutions. Furthermore, our models relied on demographic variables from
2000 and 2001 to estimate the causal effects of regulations enacted in 1991. Because we consider poten-
tial pollution and mortality outcomes in 1999–2001, we believe that demographic information from this
time period provides the most sound strategy for predicting unobserved potential outcomes. We also be-
lieve that any long-term demographic changes occurring between 1991 and 2001 would not be substantial
enough to alter our assumptions about EPA regulatory decisions in 1991. Previous studies of long-term air
pollution exposure have indicated that using this type of multisource national data does not alter substan-
tive conclusions (Eftimand others,2008;Zegerand others,2008;Grevenand others, 2011). Finally, our
linked data set contained missing preregulation pollution during 1987–1989. We imputed these missing
covariate values from a separate model and treated these imputations as fixed for the final analysis, which
does not reflect imputation uncertainty. However, we illustrated the predictive ability of our imputation
model, and a sensitivity analysis that calculated EDEK andEAEK usingonly locations with observed
preregulation pollution concentrations did not provide substantively different estimates forK = {PM10}
andindicated more pronounced health effects associated with changes in O3.

SUPPLEMENTARY MATERIAL

Supplementarymaterial is available athttp://biostatistics.oxfordjournals.org.
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