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SUMMARY

The accuracy of published medical research is critical for scientists, physicians and patients who rely on
these results. However, the fundamental belief in the medical literature was called into serious question
by a paper suggesting that most published medical research is false. Here we adapt estimation methods
from the genomics community to the problem of estimating the rate of false discoveries in the medical
literature using reported P-values as the data. We then collect P-values from the abstracts of all 77 430
papers published in The Lancet, The Journal of the American Medical Association, The New England
Journal of Medicine, The British Medical Journal, and The American Journal of Epidemiology between
2000 and 2010. Among these papers, we found 5322 reported P-values. We estimate that the overall rate
of false discoveries among reported results is 14% (s.d. 1%), contrary to previous claims. We also found
that there is no a significant increase in the estimated rate of reported false discovery results over time
(0.5% more false positives (FP) per year, P = 0.18) or with respect to journal submissions (0.5% more
FP per 100 submissions, P = 0.12). Statistical analysis must allow for false discoveries in order to make
claims on the basis of noisy data. But our analysis suggests that the medical literature remains a reliable
record of scientific progress.

Keywords: False discovery rate; Genomics; Meta-analysis; Multiple testing; Science-wise false discovery rate;
Two-group model.

1. INTRODUCTION

Scientific progress depends on the slow, steady accumulation of data and facts about the way the world
works. The scientific process is also hierarchical, with each new result predicated on the results that came
before. When developing new experiments and theories, scientists rely on the accuracy of previous dis-
coveries, as laid out in the published literature. The accuracy of published research is even more critical
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2 L. R. JAGER AND J. T. LEEK

Fig. 1. The theoretical argument suggests that most published research is false. If the probability a research hypoth-
esis is true is low, then most tested hypotheses will be false. The definition of P-values and customary significance
cutoffs mean that (α · 100)% of false-positive hypotheses and (β · 100)% of true-positive hypotheses will be called
significant. If only 1% of tested hypotheses are true and the customary values of α = 0.05 and β = 0.8 are used, then
86% of reported significant results will be false positives. This final percent of published results corresponding to
false positives is the quantity that we estimate. A version of this figure appeared on the blog Marginal Revolution and
is reproduced with permission (Tabarrok, 1989).

in medicine – physicians and patients may make treatment decisions on the basis of the latest medical
research.

Ioannidis (2005) suggested that most published medical research is actually false, calling into serious
question the fundamental belief in the medical literature. The claim is based on the assumption that most
hypotheses considered by researchers have a low prestudy probability of being successful. The suggested
reasons for this low pre-study probability are small sample sizes, bias in hypothesis choice due to financial
considerations, or bias due to over testing of hypotheses in “hot” fields. On the basis of this assumption,
many more false hypotheses would be tested than true hypotheses.

The rest of the argument is based on standard properties of hypothesis tests. If all P-values less than
some value α are called significant than on average (α · 100)% of false hypotheses will be reported as
significant. The usual choice for α in most medical journals is 0.05, resulting in 5% of false hypotheses
being reported as significant. Meanwhile, true hypotheses will be called significant at a much higher rate,
β. Many studies are designed so that β is a large value like 0.8; so that 80% of true hypotheses will be
called significant.

However, if many more false hypotheses are tested than true hypotheses, the fraction of significant
results corresponding to true hypotheses will still be low. The reason is that 5% of a very large number
of hypotheses is still larger than 80% of a very small number of hypotheses (Figure 1, reproduced with
permission from Tabarrok, 1989). The argument is plausible, since hypothesis testing is subject to error
(van Belle and others, 2004), the pressure to publish positive results is strong (Easterbrook and others,
1991; Bhopal and others, 1997), and the number of submitted papers is steadily growing
(Figure 2).

The assumptions that lead to the original result have been called into question, but counter arguments
have focused on the logic behind the approach, specifically considering how evidence was potentially
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Empirical estimates suggest most published research is true 3

Fig. 2. Major medical journal submissions are increasing over time. A plot of the number of submissions to the major
medical journals The Lancet, The Journal of the American Medical Association (JAMA), The New England Journal
of Medicine (NEJM), The British Medical Journal (BMJ ) and the flagship epidemiological journal The American
Journal of Epidemiology (AJE) between the years 2000 and 2010. Submission data are available only for the years
2006–2010 for The Lancet and the years 2003–2010 for The BMJ.

misquantified (Goodman and Greenland, 2007). On the other hand, evidence-based medicine focuses on
determining whether specific medical hypotheses are true or false by aggregating data from multiple stud-
ies and performing meta-analyses (von Elm and Egger, 2004; Altman, 2002). But, to date, there has been
no empirical approach for evaluating the rate of false discoveries across an entire journal or across multiple
journals.

To fill this gap, here we develop a statistical algorithm to directly estimate the proportion of false discov-
eries in the medical literature based only on reported, significant P-values. Our approach is derived from
similar statistical methods for estimating the rate of false discoveries in genomic (Kendziorski and others,
2003; Newton and others, 2001; Efron and Tibshirani, 2002; Storey and Tibshirani, 2003) or brain-
imaging studies (Genovese and others, 2002, where many hypotheses are tested simultaneously. There
are serious problems with interpreting individual P-values as evidence for the truth of the null hypothesis
(Goodman, 1999). It is also well established that reporting measures of scientific uncertainty such as con-
fidence intervals are critical for appropriate interpretation of published results (Altman, 2005). However,
there are well established and statistically sound methods for estimating the rate of false discoveries among
an aggregated set of tested hypotheses using P-values (Kendziorski and others, 2003; Newton and others,
2001; Efron and Tibshirani, 2002). Since P-values are still one of the most commonly reported measures
of statistical significance, it is possible to collect these P-values and use them as data to estimate the rate
of false discoveries in the medical literature.

We collected all 5322 P-values reported in the abstracts of the 77 430 papers published in The Lancet,
JAMA, NEJM, BMJ, and AJE between the years 2000 and 2010 (Section 2.2). Based on these data we are
able to calculate an empirical estimate of the rate of false discoveries in the medical literature and trends in
false discovery rates over time. We show that despite the theoretical arguments to the contrary, the medical
literature remains a reliable record of scientific progress.
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4 L. R. JAGER AND J. T. LEEK

2. METHODS

2.1 Estimating the science-wise false discovery rate

Our goal is to estimate the rate that published research results are false discoveries. False discoveries, for
our analysis, are cases where the null hypothesis is true in a hypothesis testing framework, but the results
are reported as significant. We will call this quantity π0. This is the same rate that was considered in the
original paper claiming most published results are false (Ioannidis, 2005). Similar efforts have suggested
that almost no null hypotheses are true in the economic literature and most tests that fail to reject the null do
so because of a lack of power (De Long and Lang, 1989). When the goal is to estimate the false discovery
rate among published results in the medical literature, we do not know all of the hypotheses tested by all
researchers, so we cannot estimate the probability that a priori research hypotheses are false. But we can
observe the reported P-values in the medical literature and use them to estimate the science-wise false
discovery rate.

By definition, the P-values for tests under the null distribution are uniformly distributed between 0
and 1 when correctly calculated (Casella and Berger, 2002). The reported P-values in the literature repre-
sent a subset of all P-values computed. Specifically, they are most frequently the statistically significant
P-values. The usual threshold for significance is P < 0.05, so we focus on developing a method that can
be applied to only the reported P-values less than 0.05, since they can be observed. Another statistical
property means that if we consider only the P-values that are less than 0.05, the null P-values must be dis-
tributed uniformly between 0 and 0.05, denoted Uniform(0, 0.05). Each true alternative P-value may be
drawn from a different distribution, but statistical research has shown that when considered as one group,
the distribution of true alternative P-values can be modeled as a Beta distribution, Beta(a, b) or mixtures
of Beta distributions (Allison and others, 2002, 2006; Pounds and Morris, 2003; Leek and Storey, 2011).
For a fixed a < 1, the parameter b quantifies the right skew of the Beta distribution. In other words, for
a fixed a < 1, larger values of b correspond to distributions with more significant P-values. If we only
consider the P-values less than 0.05, the distribution for alternative P-values can be modeled by a Beta dis-
tribution truncated at 0.05, denoted by t Beta(a, b; 0.05). This conditional distribution models the behavior
of reported P-values when scientists report all P-values less than 0.05 as significant, including the case
where they test many hypotheses and only report the P-values less than 0.05 (see supplementary material
available at Biostatistics online).

For any specific P-value, we do not know whether it comes from a truly null or alternative hypothesis.
So, with probability π0, it corresponds to the null distribution and with probability (1 − π0) it corresponds
to the alternative. So, the P-value distribution can be modeled as a mixture of these two distributions
(Newton and others, 2001; Efron and Tibshirani, 2002):

f (p|a, b, π0) = π0 Uniform(0, 0.05) + (1 − π0)t Beta(a, b; 0.05) (2.1)

A similar approach is taken in genomics or brain-imaging studies when many hypotheses are tested
simultaneously, although in that case all P-values are observed, not just those <0.05. The parame-
ters in equation (2.1) can be directly estimated using the expectation-maximization (EM) algorithm
(Dempster and others, 1977).

One additional complication to equation (2.1) is that some P-values are left-censored. For example,
a P-value of 0.000134343 may be reported as P < 0.01. This is a similar problem encountered in the
analysis of survival data, when patients are lost to follow-up (Kaplan and Meier, 1958). If we treat the
P-values that are reported as censored (those reported with < or �, rather than =, in the abstract), then
we can apply standard parametric survival analysis methods to extend model (2.1) to handle the censored
observations (Kleinbaum and Klein, 2005). The key assumption here, as in standard survival analysis, is
that censoring is independent of the P-value distributions. This assumption may be reasonable because

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/15/1/1/244509 by guest on 20 M

arch 2024



Empirical estimates suggest most published research is true 5

it is unlikely that among all scientists the decision to round is strongly correlated with the behavior of
statistical models across scientists, labs, and journals.

A second complication is that some P-values are rounded, so that a P-value of 0.013 is reported as
0.01. Since P-values are continuous random variables, the probability of being exactly a round value like
0.01 is zero. So, the observation that many P-values are reported as 0.01, 0.02, 0.03, 0.04, or 0.05 strongly
suggests that these P-values are rounded. We model these P-values as multinomial random variables, tak-
ing on one of the five values: 0, 0.01, 0.02, 0.03, 0.04, and 0.05. The probability of each rounded value is
equal to the total probability assigned to all the P-values that round to that value. We can calculate these
probabilities by integrating the distributions over the intervals rounding to 0, 0.01, 0.02, 0.03, 0.04, and
0.05: [0, 0.005), [0.005, 0.015), [0.015, 0.025), [0.025, 0.035), [0.035, 0.045), and [0.045, 0.05], respec-
tively (MacDonald and Pitcher, 1979; Wengrzik and Timm, 2011). Again, the assumption is that rounding
is independent of P-value, which is again likely because it would only happen if there is a correlation
between the choice to round and the choice of statistical methods and analyses across scientists, labs, and
journals.

With these modifications in place, we can now use the EM algorithm to estimate the parameters in the
model. Specifically, we can estimate π0, the rate of false discoveries. We can apply our algorithm to the
P-values from all journals and all years to estimate an overall rate of false discoveries, or we can apply our
algorithm individually to specific journals or years to estimate journal and year specific false discovery
rates. Full mathematical details of our approach and R code for implementing our models are available at
https://github.com/jtleek/swfdr.

2.2 Collecting P-values from medical publications

We wrote a computer program in the R statistical programming language (http://www.R-project.org/) to
collect the abstracts of all papers published in The Lancet, JAMA, NEJM, BMJ, and AJE between 2000 and
2010. Our program then parsed the text of these abstracts to identify all instances of the phrases “P =”,
“P <”, “P =”, allowing for a space or no space between “P” and the comparison symbols. Our program
then extracted both the comparison symbol and the numeric symbol following the comparison symbol.
We scraped all reported P-values in abstracts, independent of the study type. The P-values were scraped
from http://www.ncbi.nlm.nih.gov/pubmed/ on January 24, 2012. A few manual changes were performed
to correct errors in the reported P-values due to variations in the reporting of scientific notation as detailed
in the R code. To validate our procedure, we selected a random sample (using the random number gen-
erator in R) of abstracts and compared our collected P-values to the observed P-values manually. The
exact R code used for scraping and sampling and the validated abstracts are available at https://github.
com/jtleek/swfdr.

2.3 Obtaining journal submission data

We also directly contacted the editors of these journals, and they supplied data on the number of submitted
manuscripts to their respective journals. We were only able to obtain publication data for the years 2006–
2010 for The Lancet and for the years 2003-2010 for BMJ.

2.4 False discovery rates over time

We used a linear model to estimate the rate of increase or decrease in false discovery rates over time
(McCulloch and Searle, 2001). The dependent variable was the estimated false discovery rate for a jour-
nal in each year. The independent variable was the year. We also fit a linear model relating the false
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6 L. R. JAGER AND J. T. LEEK

discovery rate to the number of submissions for each journal. Each model included an adjustment for
journal.

2.5 Nonuniform null P-values

Theoretically, P-values should be distributed Uniform(0, 1) under the null hypothesis. However, there are a
variety of reasons that this may not be true, including common, unmeasured confounders (Leek and Storey,
2008) or P-value hacking, where individual steps in the statistical processing pipeline are changed to get
more significant results (Simmons and others, 2011). Under these conditions, the null P-values may not
be uniformly distributed, which would violate the assumptions of our algorithm. While the extent and
frequency of these problems in the medical literature has not been estimated or documented, it could lead
to bias in our estimates. So, we performed two simulation studies, one where the P-values followed our
stated assumptions and one where each researcher tested 20 hypotheses and reported only in the minimum
P-value. This represents a clear violation of our assumptions. Next we performed a simulation where all
P-values were floored rather than rounded to two significant digits. Finally, we performed an additional
simulation where the alternative distribution was held fixed and the null distribution was allowed to become
progressively more anti-conservative to evaluate the sensitivity of our estimates to changes only to the null
distribution.

2.6 Reproducible research

A key component of computational research is that the results be reproducible. We have adhered to the
standards of reproducible research by both outlining all of our statistical methods in the supplemental
material and making the exact R code used to produce our results available in supplementary material
available at https://github.com/jtleek/swfdr. By distributing our methods, code, and software our approach
adheres to the highest standards of reproducible computational research (Peng, 2012). We hope that by
providing all codes used to perform our calculations and analysis that other users will be able to evaluate
and improve on our science-wise false discovery rate estimation procedure.

3. RESULTS

Our computer program collected the abstracts from all 77 430 papers published in The Lancet, JAMA,
NEJM, BMJ, and AJE between the years 2000 and 2010. The abstracts were mined for P-values, as
described in Section 2.2. Of the mined abstracts, 5322 reported at least one P-value according to our
definition. The relatively low rate of P-values in abstracts is due to (i) many articles not reporting
P-values in the abstracts since they are essays, review articles, or letters and (ii) a trend toward decreased
reporting of P-values and increased reporting of other statistical measures such as estimates and confi-
dence intervals. Most reported P-values were less than the usual significance threshold of 0.05: 80% for
The Lancet, 76% for JAMA, 79% for NEJM, 76% for BMJ, and 75% for AJE. Among the papers that
reported P-values, a median of the two P-values were reported (median absolute deviation 1.5). Our vali-
dation analysis of 10 randomly selected abstracts showed that we correctly collected 20/21 P-values among
these abstracts, with no falsely identified P-values (see supplementary material available at Biostatistics
online).

The distributions of collected P-values showed similar behavior across journals and years (Figure 3).
Most P-values were substantially <0.05, with spikes at the round values 0.01, 0.02, 0.03, 0.04, and 0.05.
There were some variations across journals, probably due to variations in editorial policies and types
of manuscripts across the journals. We applied our algorithm to all the P-values from all journals and
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Fig. 3. Histogram of P-values < 0.05. The observed P-value distributions for all P < 0.05 scraped from PubMed for
AJE, JAMA, NEJM, BMJ, and The Lancet in the years 2000, 2005, and 2010.
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Fig. 4. Estimated false discovery rates for the years 2000–2010 by journal. The estimated false discovery rates for
AJE, JAMA, NEJM, BMJ, and The Lancet in the years 2000, 2005, and 2010. There is no significant trend in false
discovery rates over time or with increasing numbers of submissions.

all years to estimate the overall rate of false discoveries in the medical literature. The estimated rate
of false discoveries among published results was 14% (s.d. 1%). We did find variation among journals
with false discovery rates of 19% (s.d. 3%) for The Lancet, 17% (s.d. 2%) for JAMA, 11% (s.d. 2%)
for NEJM, and 17% (4%) for BMJ. To compare with the four major medical journals, we calculated an
estimate of the rate of false discoveries for AJE. The estimated rate was 11% (s.d. 4%), similar to that
of the NEJM. The AJE is an epidemiological journal and publishes substantially different types of stud-
ies than the medical journals. Specifically, there is a substantially greater focus on observational stud-
ies. This suggests that the false discovery rate is somewhat consistent across different journal and study
types.

Next we considered the rate of false discoveries over time. We applied our algorithm to estimate the rate
of false discoveries separately for each journal and each year (Figure 4). We fit a linear model adjusting
for a journal as detailed in the methods, and there was no significant trend in false discovery rates for any
journal over time (0.5% more FP per year, P = 0.18). Similarly, the positive trend in the submission rates
for these journals (Figure 2) was not associated with an increase in false discovery rates over the period
2000–2010. (0.5% more FP per 100 submissions, P = 0.12).

To evaluate the robustness of our approach to the assumption of uniformity of null P-values, we per-
formed four simulation studies. In the first case we simulated 100 journals where researchers correctly
calculated P-values and reported all P-values less than 0.05. These P-values exactly satisfy our model
assumptions. In this case, we show that our estimates of the false discovery rate are very close to the
true value (Figure 5a). In the second case, we simulated widespread P-value hacking, where in each study
performed, only the minimum P-value was reported (Figure 5b). In this case, we underestimate the science-
wise false discovery rate, but less so for small values of the false discovery rate like we have observed. Next
we simulated a scenario where all P-values were always rounded down, rather than to the nearest value -
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Empirical estimates suggest most published research is true 9

Fig. 5. Estimated versus true science-wise false discovery rate. (a) One hundred simulated journals were created where
the P-values reported were all the P-values <0.05. In this case, our estimates match the true rate of false discover-
ies closely. (b) One hundred simulated journals were created where the P-values reported were only the minimum
P-values from 20 hypothesis tests. This represents and extreme case of P-value hacking. In this case, as expected, our
estimates are anti-conservatively biased. (c) One hundred simulated journal where all rounded P-values were floored
to the next lowest hundredth rather than rounded to the nearest hundredth. Scenarios (a) and (b) represent consistent
and widespread altering of P-values in an anti-conservative way.

a major violation of our rounding assumption. In this extreme case, we again underestimate the science-
wise false discovery rate (Figure 5c). The latter two cases represent extreme scenarios where researchers
are consistently and intentionally misrepresenting the analyses they have performed. To get a better idea
of the sensitivity of our estimates to the null distribution of P-values we also performed a simulation
where the alternative distribution was held fixed and the null distribution was allowed to become more and
more anti-conservatively biased. As expected, when the null distribution and the alternative distribution
are the same our estimates will be anti-conservative (Figure S1, see supplementary material available at
Biostatistics online).
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10 L. R. JAGER AND J. T. LEEK

4. DISCUSSION

Here we proposed a new statistical method for estimating the rate of false discoveries in the medical lit-
erature directly based on reported P-values. We then collected data from the major medical journals and
showed that most published medical research results in these journals are not false. A similar result held
for the epidemiological journal AJE, even though this journal publishes a substantially different type of
result in general. Our results suggest that while there is an inflation of false discovery results above the
nominal 5% level (van Belle and others, 2004), but the relatively minor inflation in error rates does not
merit the claim that most published research is false. Although our results disprove the original claim that
most published research is false, they do not invalidate the criticisms of standalone hypothesis tests for
statistical significance that were raised. Specifically, it is still important to report estimates and confi-
dence intervals in addition to or instead of P-values when possible so that both statistical and scientific
significance can be judged by readers (Altman, 2005; Altman and Gardner, 1986). In some cases, a truly
alternative hypothesis may still have a very small effect size and still lead to a small P-value if the sample
size is large enough, although these cases may not be scientifically interesting.

Here we have adapted methods from the genomic literature for false discovery rate estimation. But
there are important distinctions between multiple testing in genomics studies and across unrelated studies.
In most genomic studies, there are a large number of variables measured on the same set of samples.
Generally, the hypothesis test performed on each of the measured variables will have the same form. In
genomic studies, many of the null hypotheses are expected to be true and the primary variations in power are
due to differences in effect sizes. In the medical literature, it is a substantially more complicated situation.
Each study may have a different sample size, different statistical techniques may be used, and it is not clear
that most null hypotheses are expected to be true. As long as P-values are correctly calculated under the
null hypothesis and our stated reporting conditions hold, our estimates of the science-wise false discovery
rate will be sound. However, it is clear that when considering hypothesis tests across multiple studies there
will be violations of these assumptions to a greater extent than in genomic studies. An interesting avenue
for future research would be to estimate the robustness of science-wise false discovery rate estimators to
variations in the extent and the type of P-value hacking (Simmons and others, 2011) beyond the basic
simulations that we have performed here.

An important consideration is that we have focused our analysis on the major medical journals. Another
interesting avenue for future research would be to consider less selective or more specialized medical jour-
nals to determine journal characteristics that associate with variations in the false discovery rate. A lim-
itation of our study is that we consider only P-values in abstracts of the papers. We chose to focus on
the abstracts of papers as the P-values in abstracts primarily correspond to main effects. A potentially
informative analysis could focus on breaking down the rate of false discoveries by whether the P-values
corresponded to a primary or secondary analysis or other characteristics of the analyses performed—
such as the type of hypothesis test performed. However, such a calculation would require more exten-
sive development of text mining methods for automatically detecting differences in the characteristics
of tested hypotheses. Despite these limitations, we have performed the first global empirical analysis of
the rate of false discoveries in the major medical journals and we have shown that theoretical claims to
the contrary, the data show that the medical and scientific literature remain a reliable record of scientific
progress.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org and supplementary code is
available from https://github.com/jtleek/swfdr.
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