
Biostatistics (2014), 15, 1, pp. 28–36
doi:10.1093/biostatistics/kxt036
Advance Access publication on 25 September 2013

Discussion: Why “An estimate of the science-wise false
discovery rate and application to the top medical

literature” is false
JOHN P. A. IOANNIDIS

Departments of Medicine, Health Research and Policy, and Statistics, Stanford University,
1265 Welch Road, MSOB Room X306, Stanford, CA 94305, USA

jioannid@stanford.edu

SUMMARY

Jager and Leek have tried to estimate a false-discovery rate (FDR) in abstracts of articles published in five
medical journals during 2000–2010. Their approach is flawed in sampling, calculations, and conclusions.
It uses a tiny portion of select papers in highly select journals. Randomized controlled trials and sys-
tematic reviews (designs with the lowest anticipated false-positive rates) are 52% of the analyzed papers,
while these designs account for only 4% in PubMed in the same period. The FDR calculations consider
the entire published literature as equivalent to a single genomic experiment where all performed analy-
ses are reported without selection or distortion. However, the data used are the P-values reported in the
abstracts of published papers; these P-values are a highly distorted, highly select sample. Besides selective
reporting biases, all other biases, in particular confounding in observational studies, are also ignored, while
these are often the main drivers for high false-positive rates in the biomedical literature. A reproducibil-
ity check of the raw data shows that much of the data Jager and Leek used are either wrong or make no
sense: most of the usable data were missed by their script, 94% of the abstracts that reported �2 P-values
had high correlation/overlap between reported outcomes, and only a minority of P-values corresponded to
relevant primary outcomes. The Jager and Leek paper exemplifies the dreadful combination of using auto-
mated scripts with wrong methods and unreliable data. Sadly, this combination is common in the medical
literature.
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1. INTRODUCTION

Jager and Leek apply a standard false-discovery rate (FDR) approach to assess abstracts of papers published
in the New England Journal of Medicine (NEJM), Journal of the American Medical Association (JAMA),
Lancet, British Medical Journal (BMJ), and American Journal of Epidemiology (AJE). They claim to
provide an “empirical estimate” of false positives, but no empirical estimates are provided: there is no
replication effort to validate published results. Instead, inferences depend on modeling with implausible
assumptions. As discussed below, the work is fundamentally flawed in its data, sampling, calculations, and
conclusions.

c© The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
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2. OVERVIEW OF MAIN FLAWS

2.1 Failure to recognize that bias is often the major cause of high false-positives

Instead of challenging my real arguments about false research findings (Ioannidis, 2005a), Jager and Leek
attacked a strawman thereof, using a diagram from a blog and claiming that this represents “The theoretical
argument suggesting most published research is false”. That diagram refers to a research world without
bias. Indeed, if we reach that perfection one day, FDR ∼14% may become possible. Fourteen percentage is
still much higher than the nominal errors suggested by the reported P-values (largely <1% in the analyzed
sample of papers), but desirable. Conversely, my conclusion that “for most study designs and settings,
it is more likely for a research claim to be false than true” was drawn from simulations that accounted
for potential bias. The high false-positive rates inferred by these simulations have now been repeatedly
validated empirically by numerous replication efforts in very diverse fields of biomedical research and
beyond (see Section 2.7).

2.2 Conglomeration of proposed discoveries with validated results

In my PLoS Medicine paper (Ioannidis, 2005a) I separated first proposed discoveries (“research findings”)
versus subsequent evidence. I have repeatedly made a plea for replication efforts and larger-scale evidence
from additional studies and careful meta-analyses, to increase the credibility of scientific results. Con-
versely, Jager and Leek conglomerated initial discovered effects, subsequent replication efforts, and even
meta-analyses in their samples.

2.3 Ignoring that false-positive rates vary enormously across fields and study designs

A central point of the PLoS Medicine paper (Ioannidis, 2005a) was how false-positive rates are expected to
vary greatly depending on the field and type of study design from ∼0% to ∼100%, pointing that some study
designs have high credibility, e.g. results from well-powered randomized controlled trials (RCTs) with little
bias were estimated to be 85% likely to be true even with P ∼ 0.05 (>95% with P < 0.0001). The same
was estimated to apply for well-conducted confirmatory systematic reviews/meta-analyses. Putting in the
same FDR analysis P-values from RCTs, meta-analyses, genetics, prognostics, diagnostics (and more)
makes no sense.

2.4 Sampled papers were mostly those with lowest false-positive rates

The sample of papers analyzed includes predominantly designs with the lowest possible false-positive
rates: 52% were either RCTs or systematic reviews, while these two designs account for only 7% of all
papers (30% of those with abstracts) in the same journals (Table 1). Sampled RCTs and systematic reviews
from these premier journals are among the largest and best in the literature. The problem with statisti-
cally significant well-conducted RCTs and meta-analyses is not so much that they find false positives, but
inflated effect size estimates due to the “winner’s curse”. See Ioannidis (2008) for references on this issue;
Siontis and others (2011) on inflated effects in major journals; and Pereira and others (2011) on inflation
of large effects in >85 000 meta-analyses. Jager and Leek did not address effect sizes.

2.5 The assumed distributions of P-values are implausible

The main assumption that “by definition, the P-values for false-positive findings are uniformly distributed
between 0 and 1” and that true positives are represented by a peculiarly censored beta distribution is entirely
implausible. This standard FDR method works in single datasets using the same platform (e.g. assessing
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Table 1. Number of articles and types of designs in the sample analyzed by Jager and Leek versus all the
articles published in the five journals and in the entire PubMed database for 2000–2010

Proportion (%) with different designs

RCT or SR
Number of articles RCT SR RCT or SR or CT

Jager and Leek sample
AJE 499 3 5 8 15
BMJ 667 44 21 59 73
JAMA 1425 38 15 49 56
Lancet 1317 50 6 56 62
NEJM 1414 63 1 63 70
All five journals 5322 45 9 52 59
Same five journals: all articles 76 862 4∗ 2∗ 7∗ 8∗
Same five: articles with abstracts 15 658 21∗ 11 30∗ 38∗
All PubMed: all articles 7 199 704 2∗ 2∗ 4∗ 6∗
All PubMed: articles with abstracts 5 865 305 3∗ 2∗ 4∗ 7∗

RCT, randomized controlled trial; SR, systematic review; CT, clinical trial.
The type of study is as assigned by PubMed. PubMed may assign more than one type to the same article and the type assigned is
subject to some error, but it is overall very reliable for papers published in 2000–2010. The Jager and Leek sample represents the
articles they analyzed in their paper (PMIDs derived from their pvalueData R file).
∗<0.001 for comparison of the Jager and Leek sample versus other articles.

thousands of gene tags or brain signals) and where all analyses are ideally reported without any selection
and distortion. Conversely, the medical literature includes thousands of different studies with very different
designs and very different types of measurements and analyses, and suffers selective reporting and other
biases. Reported P-value distributions are primarily determined by reporting biases and field-specific
conventions.

2.6 P-values in abstracts are extremely selected

An inferential model that assumes that the P-values reported in the abstracts are representative of all the
P-values generated in all primary statistical analyses is totally implausible. As Gotzsche (2006) has shown
empirically, one cannot believe P-values in abstracts. The average abstract of a research paper reports only
a couple of P-values, while hundreds, thousands, or even millions of P-values are generated in analyzing
data that end up being summarized in a published paper. P-values reported in the full text of the paper are
a distorted sample of those obtained in the universe of all analyses, typically favoring more significant
results. P-values reported in the abstract are an even more highly distorted sample of the already distorted
sample of P-values reported in the main paper. Not surprisingly, most investigators report some of the
best-looking P-values in their abstracts and Jager and Leek indeed show that 81% of the P-values in
abstracts were <0.05. Empirical data have demonstrated that non-significant results are disappearing
from the published literature and that least credible scientific fields publish the highest proportions of
significant results (Fanelli, 2010a, 2010b, 2012). Significance chasing and poor replication practices are
documented in diverse fields of science, including psychological sciences, economics, marketing, etc. (see
selected references in Appendix References 1 of supplementary material available at Biostatistics online).
The Jager and Leek paper fits in this expanding literature, but for the exact opposite reason than what they
infer. Journals with more prominently significant P-values may not have a lower FDR (as Jager and Leek
would infer with their method), but simply worse selective reporting bias. As an extreme scenario, let us
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suppose a hypothetical “null scientific field” where all the tested associations are null; if scientists in that
field report in abstracts only whatever P-values reach <0.001, Jager and Leek would estimate FDR ∼0%
in that field, instead of the true FDR ∼100%.

Jager and Leek have added an interesting extension in their Figure 5 trying to model the potential impact
of some types of biases. However, they have not modeled anything close to the strong biases likely to pre-
vail in the literature. For example, they claim that their simulation, where the P-values reported were only
the minimum P-values from 20 hypothesis tests, represents “an extreme case of P-value hacking”. Selec-
tion forces for P-values in the abstracts of biomedical papers are often far more intense. For example, in
many omics studies, the P-values reported in abstracts are less than one millionth of those obtained in
analyses performed, and even in traditional epidemiology often �1% of the P-values obtained in anal-
yses are reported in the abstract. Jager and Leek ignore some more appropriate exploratory methods for
bias modeling, such as selection models—see, for example, Pfeiffer and others (2011), Hedges and Vevea
(1996, 2005), and Vevea and Hedges (1995). Bias modeling is an interesting exploratory avenue for future
research, but it remains as speculative as any post hoc exercise.

2.7 A rich literature on empirical replication rates is ignored

Jager and Leek claim that “to date there has been no empirical approach for evaluating the rate of false
positives across an entire journal or across multiple journals”. This is misleading. “Empirical approach”
means independent replication in subsequent studies. There are thousands of replication studies and numer-
ous empirical evaluations, each including multiple studies, where researchers have tried to replicate pre-
viously proposed findings. These evaluations confirm ubiquitously the high rates of false positives and
the high rates of inflated effects in original discoveries. For example, several empirical evaluation stud-
ies of attempted large-scale replications of over a thousand proposed candidate gene genetic associa-
tions show replication rates ranging from 0% to 6%, with an average of 1.2%, i.e. FDR ∼98.8% (see
Ioannidis and others, 2011 for an overview). Empirical evaluations by scientists at Amgen and Bayer of
preclinical studies done by leading academic investigators also show that the large majority of claimed
discoveries were false positives that could not be reproduced (Prinz and others, 2011; Begley and Ellis,
2012). The literature on non-replication includes already many thousands of references.

2.8 The sample of journals is highly selected

Lancet, JAMA, BMJ, NEJM, and AJE represent a tiny and highly select sample that is not representative
of the medical literature. They try to cherry pick papers with very low acceptance rates. These five jour-
nals published only 0.27% of the 5 865 305 PubMed articles with abstracts in 2000–2010 (Table 1). They
published many RCTs and systematic reviews (designs with expected low FDR), while these two designs
accounted for only 4% of PubMed articles with abstracts (Table 1).

2.9 Simpson’s paradox invalidates time-trend analyses

Jager and Leek find a constant FDR over time. Time-trend analysis without stratification by design type is
misleading. For example, even if the FDR increased for all types of designs over time, the average FDR for
the five journals would remain the same (or decrease), if these journals selected more stringently over time
for papers with high-credibility designs and left the others to lesser journals. For example, the 5 journals
published 158 systematic reviews in 2000, but 218 in 2010, despite diminishing their total published articles
with abstracts from 1787 in 2000 to 1285 to 2010. Moreover, some current designs did not even exist in
2000 (e.g. genome-wide association studies).

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/15/1/28/245654 by guest on 20 M

arch 2024
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2.10 The sample of studies with P-values in the abstract is highly selected

Jager and Leek found 5322 papers with P-values among 77 430 papers screened, i.e. inferences are made
about only 7% of the papers in the five journals. This is a highly selected sample, adding another cause
of selective distortion. Moreover, studies that give numbers in their abstract are often of better quality and
more likely to represent designs with lower false-positive rates, e.g. RCTs.

2.11 Additional problems exist with epidemiological studies and their journals

Jager and Leek note that AJE publishes mostly observational studies and interpret the data saying that
“this suggests that the FDR is somewhat consistent across different journal and study types”. This is
highly misleading. Simply AJE (and the observational studies that it tends to publish) select and report
very nice-looking P-values and effects in the abstracts (Kavvoura and others, 2007). The possibility
that epidemiological studies have the same (or even better) FDR as the typically large RCTs pub-
lished in the other four major journals goes against (epidemiological) theory and extensive empirical
evidence (Ioannidis, 2005b; Young and Karr, 2011). For example, consider hormone therapy for prevent-
ing coronary heart disease, low-fat diet, vitamin E and coronary heart disease, beta-carotene and can-
cer chemoprophylaxis, estrogen and dementia, and so forth (see Appendix References 2 of supplementary
material available at Biostatistics online). Young and Karr (2011) have shown that of 52 major claims
made by observational studies, none was validated when tested in RCTs.

Reported P-values in observational studies do not suffer just from selective reporting but also from
confounding bias. In a typical observational dataset, almost all variables may seem associated with all
the others (as nicely demonstrated by Smith and others, 2007) due to the dense correlation patterns
(Ioannidis and others, 2009). This does not mean that correlation is causation or that these associations
are true and replicable in other populations where confounder patterns are different; let alone that one
can improve important outcomes by modifying these variables. If unaccounted confounding could be
accounted, most of these associations might evaporate.

2.12 Selecting only the P < 0.05 range deflates FDR estimates

The attraction of passing the 0.05 mark is not absolute (Ioannidis and Trikalinos, 2007): P-value clustering
extends in the range of P = 0.05 and possibly even higher (Kavvoura and others, 2008). Even in RCTs,
investigators claim significance for many non-significant results by applying “spin” (Boutron and others,
2010). For example, Jager and Leek exclude a huge peak of 470 P-values at 0.05 from FDR calculations,
even though most are truncated (i.e. P < 0.05 anyhow) and almost all are considered “significant” by their
authors. This seemingly subtle exclusion markedly affects the overall FDR estimates, and totally invalidates
FDR estimates comparing journals and years (see Appendix text 1 of supplementary material available at
Biostatistics online).

2.13 Much of the data is either wrong or makes little sense

I probed further some raw data. First, I checked whether indeed only 5322 papers had usable data. For
studies that report only effect sizes and confidence intervals (CIs) without P-values, one can easily obtain
equivalent P-values: z = θ/[(upper 95% CI − lower 95% CI)/3.92]. These are important to include, since
effect sizes and CIs are more commonly used when 95% CIs approach the null, i.e. P-values are modest.
A search of papers with abstracts in the 5 journals AND (P [tw] OR CI [tw] OR confidence [tw]) for
2000–2010 yielded 10 805 articles: 19/20 (95%) randomly sampled were eligible. Moreover, many of the
5322 papers retrieved also had additional usable effect sizes and CIs. In all, Jager and Leek missed most
of the eligible data, and selected those with systematically lower P-values, thus deflating FDR estimates.
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Table 2. In-depth analysis of 20 randomly selected abstracts with P-values

PMID Design (n) P-values Primary (sign) Correlation/overlap of outcomes with reported P-values

18068514 RCT (50 + 22) 0.634, 0.561∗ 0 (0) Yes (diastolic and systolic blood pressure)
16525139 RCT (323) <0.001, 0.01, 0.90, 0.001∗ 1 (1) Yes (complete response, 5-year event-free survival, 5-year

overall survival, median survival after relapse)
18950853 RCT (203) <0.0001, 0.0001∗ 1 (1) No
15173147 RCT (347) 0.01, 0.03, 0.40∗ 1 (0) Yes (1-year hemoglobin, 1-year and 2-year age-adjusted

hemoglobin <11)
15928285 RCT (70) <0.001, <0.001, 0.01∗ 2 (2) Yes (recurrence of atrial fibrillation, hospitalization, atrial

fibrillation episodes)
16267322 RCT (905) 0.05, 0.12, <0.001, 0.003∗ 2 (1) Yes (response, remission, sustained response, remission)
15257998 PO (326 events) 0.99, 0.12∗ 0 (0) Yes (cancer risk with folate intake, cancer risk with

energy-adjusted folate intake)
12867108 RCT (1701) 0.03, 0.01, 0.0004∗ 0 (0) Yes (ipsilateral invasive disease, ipsilateral ductal cancer,

ipsilateral ductal cancer)
19502645 RCT (2368) 0.97, 0.89, 0,70, 0.13, 0.01, 0.002, 0.003∗ 4 (0) Yes (death, death or major event, death, death or major

event, death or major event in stratum, interaction for
stratum by study group, severe hypoglycemia)

11812558 PO (180) <0.0001, 0.002∗ 1 (0) Yes (disease-free survival between three tumor groups,
disease-free survival for Duke A versus B in one of the
three groups)

15950715 CC (334) 0.07∗ 0 (0) Only one P-value reported
19181729 RCT (18858) 0.08, 0.02, <0.001∗ 1 (0) Yes (breastfeeding, age, and income associations)
11705561 CC (604) 0.03, 0.05, 0.017∗ 0 (0) Yes (wheeze risk with hookworm infection, wheeze risk

with Der p1 level)
11907289 RCT (213) <0.001∗ 1 (1) Only one P-value reported
19741227 PO (19) 0.02, 0.02∗ ? (?) Yes (JC virus in urine, JC virus in blood cells)
12215131 RCT (176) <0.001, 0.02∗ 1 (1) Yes (success at 3 months, success at 18 months)
12241661 CC (no data) <0.0001 0 (0) Only one P-value reported
12181103 CC (264) 0.0001∗ 0 (0) Only one P-value reported
11943693 CS (1927) 0.02, <0.0001∗ 0 (0) Yes (spinal BMD, femoral BMD)
14693873 RC (513) <0.001, <0.02, 0.01, 0.03, 0.001 1 (1) Yes (unadjusted, adjusted, propensity matched, matched and

adjusted, subgroup adjusted effect of valve surgery on
death)

n, sample size; RCT, randomized controlled trial; PO, prospective observational; CC, case–control; CS, cross-sectional; RC, retrospective cohort; primary (sign), number of P-values
in abstract that refer to characterized primary endpoints (in parenthesis number with <0.05); BMD, bone mineral density.
12558 [PubMed - indexed for MEDLINE].
∗Additional study outcomes are stated in the results of the abstract, but without P-value given. ?, unclear.
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Then I read 20 randomly selected abstracts with P-values (the 10 sampled by Jager and Leek
and another 10 that I sampled) (Table 2, Appendix References 3 of supplementary material available at
Biostatistics online). Of the 20, 11 papers (55%) represent RCTs, and 10/11 have larger sample size than
the average RCT in the literature which is n = 80 (Chan and Altman, 2005). Yet, only 11 of the 20 papers
give P-values for what are defined as pre-specified primary outcomes. Even then it is unclear whether the
exact analysis was indeed pre-specified: empirical evidence from RCTs (Chan and others, 2008) shows
that deviations between protocols and publications are very common for primary outcome analyses (25/42),
and almost ubiquitous for subgroup analyses (25/25), and adjusted analyses (23/28).

The raw data that Jager and Leek extracted and analyzed make little sense. Even though 17/20
abstracts (85%) give some significant P-value(s), only 7/20 (35%) give significant P-values for (claimed)
primary endpoints. Out of the 20, 17 (85%) abstracts report some results qualitatively without giving
their P-values—apparently these are mostly non-impressive (14/17 report qualitatively “negative” results).
Whenever there is �2 P-values reported in the abstract, with one exception (15/16, 94%) the P-values
refer to analyses that are not independent but highly correlated and/or overlapping. Overlapping, corre-
lated P-values largely drive the calculations. For example, the automated script extracts five “indepen-
dent” P-values for PMID = 14693873; but simply reading the abstract one realizes that it is the very same
outcome presented in unadjusted, adjusted, propensity-matched, matched-plus-adjusted, and subgroup-
adjusted analyses. The paper is possibly best represented by the P = 0.03 for the model that is propensity-
matched plus adjusted; but the other four P-values with the more spectacular 0.02, 0.01, 0.001, <0.001 are
also counted, deflating the estimated FDR. Finally, many of the non-primary significant P-values represent
largely irrelevant analyses. For example, PMID = 19181729 is an RCT that assesses whether setting new
breastfeeding groups can affect breastfeeding and it shows a “negative” P = 0.08 for the primary outcome
(breastfeeding). However, the abstract incidentally reports also two “positive” P-values (0.02 and <0.001)
on the association of age and income with characteristics that were clearly neither primary nor secondary
outcomes; this is information of little or no relevance on factors whose modification is impossible (age)
or notoriously difficult unfortunately (income). The abstracts of the crème de la crème of the biomedical
literature are a mess. No fancy informatics script can sort out that mess. One still needs to read the papers.

2.14 Final comment

I congratulate Jager and Leek on their adoption of reproducible research practices. This has allowed probing
their work and discovering more promptly the major errors made, thus speedily putting their claims to rest.
Instead of proving the reliability of the medical literature, their paper exemplifies how badly things can go
when automated scripts are combined with wrong methods and unreliable data. Sadly, this dreadful triplet
remains common in published papers, even those by the best authors and in the best journals.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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The paper “An estimate of the science-wise false discovery rate (SWFDR) and application to the top
medical literature” by Jager and Leek provides an interesting perspective on FDRs in published medi-
cal research studies. As the authors point out, the distribution of p-values under the null hypothesis in
these studies may well depart from uniform, and for this reason the authors explore the consequences of
“p-hacking” and rounding of p-values on the FDR. Even after accounting for p-hacking, the authors con-
clude that the FDR is not alarmingly high. However, the authors appear to ignore other possible sources of
departure from uniformity such as bias, model misspecification, and measurement error.

In a recent experiment, we investigated the distribution of p-values when the null hypothesis is true for
real-world studies using large-scale longitudinal observational databases (Schuemie and others, 2013).
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