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SUMMARY

Hierarchical modeling is becoming increasingly popular in epidemiology, particularly in air pollution
studies. When potential confounding exists, a multilevel model yields better power to assess the
independent effects of each predictor by gathering evidence across many sub-studies. If the predictors
are measured with unknown error, bias can be expected in the individual substudies, and in the combined
estimates of the second-stage model. We consider two alternative methods for estimating the independent
effects of two predictors in a hierarchical model. We show both analytically and via simulation that one
of these gives essentially unbiased estimates even in the presence of measurement error, at the price
of a moderate reduction in power. The second avoids the potential for upward bias, at the price of a
smaller reduction in power. Since measurement error is endemic in epidemiology, these approaches hold
considerable potential. We illustrate the two methods by applying them to two air pollution studies. In
the first, we re-analyze published data to show that the estimated effect of fine particles on daily deaths,
independent of coarse particles, was downwardly biased by measurement error in the original analysis.
The estimated effect of coarse particles becomes more protective using the new estimates. In the second
example, we use published data on the association between airborne particles and daily deaths in 10 US
cities to estimate the effect of gaseous air pollutants on daily deaths. The resulting effect size estimates
were very small and the confidence intervals included zero.
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1. INTRODUCTION

A major concern of epidemiologists is whether an observed association between one exposure and an
outcome is due, all or in part, to the correlation between that exposure and a second exposure. If the most
likely candidates for the confounding exposures are known, the best approach is to measure and control
for them. In many cases, there are two correlated exposures of interest, or one exposure of interest and
one principal confounder. We focus on this scenario as a simplification of the general case of multiple
confounders, but also report the sensitivity of the conclusions to cases with multiple confounders.
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540 J. SCHWARTZ AND B. A. COULL

Under the standard modeling assumptions, the results of the multiple regression will give unbiased
estimates of the effects of both exposures. Three events tend to spoil this happy scenario. First, it may not
be possible to measure the confounding exposure. Second, the correlation between the two exposures may
be high enough to yield relatively imprecise estimates of each. For example, in air pollution studies, the
correlation between concentrations of airborne particles and carbon monoxide often exceeds 0.80. Finally,
both of the exposures are almost certainly measured with error. While measurement error generally biases
effect estimates toward the null, the effect of one variable may be partially transferred to the better
measured one, resulting in an upward bias if there are substantial differences between the measurement
errors in the two exposures (Zegeret al. 2000). In many cases, interest focuses on combining evidence
across multiple studies or samples in a hierarchical model. In the presence of measurement error, bias will
remain in this hierarchical setting, including the risk of upward bias. The latter is of special concern in a
regulatory setting, or for risk assessment. Regulatory decisions may be based on estimated effect sizes,
and while governments are often willing to make decisions in the presence of uncertainty, bias is another
matter. Some assurance that effect sizes are not overstated may be critical. In the hierarchical model
setting, it is possible to obtain two alternative estimates of the unconfounded effect of each exposure
using hierarchical modeling. This paper describes those two alternatives and explores the performance of
the standard method and the alternative methods in the presence of measurement error both analytically
and via simulation. Finally, we apply the proposed approaches to two examples of current interest. One
involves the relative importance of particles of different size in the association between airborne particles
and daily deaths. The second examines the association between daily deaths and gaseous air pollution.

2. A MOTIVATING EXAMPLE

Particulate air pollution has been associated with daily deaths in many studies over the past decade
(Schwartz and Dockery, 1992; Fairley, 1992; Schwartz ,1993; Popeet al., 1995). These studies have used
Poisson regression to model the dependence of daily death counts on air pollution and other factors,
typically using several thousand days of data. Recently, attention has focused on hierarchical models
of multiple cities [e.g. six cities (Schwartzet al., 1996), 12 cities (Katsouyanniet al., 1997), 10 cities
(Schwartz, 2000), 20 cities (Danielset al., 2000; Sametet al., 2000)] which allow examination of sources
of heterogeneity. For example, Samet and co-workers (2000) examined the effect of daily variations
in PM10 (particles less than 10µm in diameter) concentrations and daily deaths in 20 cities. Those
associations were shown to be independent of SO2, CO, NO2, and O3 concentrations in multipollutant
models. In contrast, no significant associations were seen with any of the gases. While such studies
strongly support the conclusion that a causal independent effect of PM10 exists, Lipfert and Wyzga
(1997) have argued that if one pollutant is measured with substantially more error than another, the better-
measured pollutant could capture the effect of the more poorly measured one. The goal of this paper is to
develop an estimate of the independent effect of PM10 and gaseous air pollutants that is free of upward
bias, or ideally unbiased, in the presence of measurement error.

3. MODELS

Hierarchical modeling describes analyses for data that have several levels. In the air pollution setting,
consider a set of 10 studies examining the association between an outcome of interest and two exposures
of interest. In the following, we use a two-stage approach to estimate overall associations. Dominiciet al.
(2000) noted that such an approach works well given that the sample size for each study is large, which is
typically the case in multi-city epidemiological mortality studies. We first consider the simple setting in
which associations of interest are homogeneous across study before moving to the heterogeneous case.
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Measurement error in hierarchical models 541

3.1 Homogeneous effects model

For dayt , t = 1, . . . ,Ti , in city i , i = 1, . . . , N , consider the true model

Yit = β0 + β1X1i t + β2X2i t + εi t (3.1)

where

Xi t = (X1i t , X2i t )
T ∼ N

(
µx,i ,

[
σ 2

x1 σx1σx2ρx,i

σx1σx2ρx,i σ 2
x2

])
, (3.2)

andεi t ∼ N (0, σ2
ε ) and is independent ofXi t . If we measureXi t exactly, then fitting the model

X2i t = γ0i + γ1i X1i t + ηi t , (3.3)

yields

E(γ̂1i ) = σx2ρx,i

σx1
= γ1i .

Now, supposeXhit is measured with error. DenoteZhit = Xhit + Uhit , h = 1,2, with

Ui t = (U1i t , U2i t )
T ∼ N

(
0,

[
σ 2

u1 σu1σu2ρu,i

σu1σu2ρu,i σ 2
u2

])
.

Consider first the setting in which the measurement error for the two exposures is independent; that is,
ρu,i = 0 for all i . Suppose we fit the model

Z2i t = γ ∗
0i + γ ∗

1i Z1i t + η∗
i t

separately for each city. Then, from the distributional assumptions onXi t , Zi t ,andUi t , we have

E(γ̂ ∗
1i ) = σx1σx2ρx,i

σ 2
x1 + σ 2

u1

= σ 2
x1

σ 2
x1 + σ 2

u1

γ1i = αγ1i ,

whereα is typically termed the attenuation coefficient. Now consider the second model

Yit = δ∗
0i + δ∗

1i Z1i t + ζ ∗
i t .

Due to the measurement error and the exclusion ofZ2, we have

E (̂δ∗
1i ) = σ 2

x1

σ 2
x1 + σ 2

u1

(β1 + β2γ1i ) = α(β1 + β2γ1i ).

Now suppose we know the trueγ ∗
1i = αγ1i , instead of the estimatêγ ∗

1i . Then we have a random variable
δ̂∗

1i with meanαβ1 +β2 (αγ1i ) = c0 +β2 (αγ1i ), a linear function of variableαγ1i . Thus, we can estimate
c0 andβ2 using ordinary least squares, yielding an attentuated estimate ofβ1 but an unbiased estimate
of β2 in the presence of independent measurement errorU. This development suggests several additional
considerations:

1. Although we use the multivariate normal formulation to make our estimation strategy clear,
normality is not required as long as linear models (3.1) and (3.3) hold. For instance, Lyles and
Kupper (1997) noted that, when a linear model contains a lognormal covariate measured with
multiplicative error, ordinary least squares estimation yields similarly attenuated slope estimates.
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2. In practice, we have also estimatedγ ∗
1i for each city. When the sample sizes become large within

each study, which is often the case in the air pollution context, this error will be neglible and the
estimate ofβ2 is unbiased. Note that this is in contrast to fitting the full model withZ1i t andZ2i t , as
the estimator ofβ2 is biased regardless of the sample sizes for each city. Simulation results presented
in Section 4 suggest that even though eachγ ∗

1i is estimated, this two-stage approach outperforms
the full model estimator.

3. In order for this two-step approach to work, variation in theγ ∗
1i must be present. Otherwise, the

approach is analogous to a regression with no variation in the explanatory variable. This of course
precludes the artificial use of this approach that divides a single sample into multiple ‘locations’.

4. The proposed approach requires the attentuation factor,α, to be constant across locations. The above
development satisfies this assumption since the model assumesσ 2

x1, σ 2
x2, σ 2

u1, andσ 2
u2 are constant

across locations. An alternative development that also satisfies this assumption is the case in which
the measurement error variances for a given city are a fixed proportion of the true exposure variance.
Weuse this alternative assumption in the simulations of Section 4.

5. As long as the individual study sample sizes are sufficiently large and there is heterogeneity in the
linear relationship betweenX1i t andX2i t , we haveshown that this meta-regression approach works
when the effects of interestβ1 andβ2 do not vary across studies. We relax this assumption in the
next section.

6. The above development substitutes the expression ofX2 that is a function ofX1. We can also
reverse this substitution, obtaining an estimate ofβ1 by expressingX1 as a function ofX2 in (3.1).
Werefer to these as slope estimates ofβ1 andβ2, respectively. In addition, the estimated intercepts
ĉ0 yield attentuated estimates ofβ1 andβ2, with these estimates attentuated byα. Thus, this use
of hierarchical modeling yields three possible estimators of the independent effects of each of the
two exposures: the standard (two-exposure model) estimator, the intercept estimator, and the slope
estimator. When measurement error does not exist, the standard estimator will be more efficient.
However, this estimator incurs bias in the presence of measurement error.

We also note that Marcus and Kegler (2001) criticized the proposed meta-regression approach on the
basis that it yields biased estimates when one omits an important confounder from the model. However,
this is true of most modeling strategies; an important assumption required for the validity of the resulting
estimates is that the model is correctly specified. For instance, the approach based on the full model also
produces biased estimates when an important confounder is omitted from the model. If interest focuses
on additional confounders, the above development extends naturally beyond the two exposure setting.
Suppose the full model consists of exposuresX1, X2, and X3. The first stage regressesY , X2, and X3
on X1 for each city. The second stage consists of a multiple regression using the resultingY coefficients
as the response and theX2 and X3 coefficients as covariates. In this setting, the slope estimates are not
unique. For instance, one could also obtain an unbiased slope estimate ofβ2 usingX3 as the covariate in
the first stage of this approach.

3.2 Correlated measurement error

Now consider model (3.1) with correlated measurement errors, so thatρu,i �= 0. The expected value of
the slope in the regression model

Z2i t = γ ∗
0i + γ ∗

1i Z1i t + η∗
i t

is now

E(γ ∗
1i ) = αγ1i + ρu,iσu1σu2

σ 2
x1 + σ 2

u1

. (3.4)
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Table 1. Bias for the second coefficient (β2) from
the two-stage estimator based on the full model and
the proposed slope estimator under the homogeneous
effects model (3.1) in the presence of measurement

error correlation. In all cases, β2 = 1.0

Range for Range for
σu,1 σu,2 ρx,i ρu,i FULL SLOPE
0.5 0.5 [0.0,0.6] 0.0 0.84 1.00
0.5 0.5 [0.0,0.6] [0.0,0.1] 0.83 1.00
0.5 0.5 [0.0,0.6] [0.0,0.2] 0.82 0.99
0.5 0.5 [0.0,0.6] [0.0,0.5] 0.80 0.96

1.0 0.5 [0.0,0.6] 0.0 0.92 1.00
1.0 0.5 [0.0,0.6] [0.0,0.1] 0.91 0.99
1.0 0.5 [0.0,0.6] [0.0,0.2] 0.91 0.97
1.0 0.5 [0.0,0.6] [0.0,0.5] 0.89 0.87

1.0 1.0 [0.0,0.6] 0.0 0.57 1.00
1.0 1.0 [0.0,0.6] [0.0,0.1] 0.55 0.98
1.0 1.0 [0.0,0.6] [0.0,0.2] 0.54 0.92
1.0 1.0 [0.0,0.6] [0.0,0.5] 0.51 0.59

0.5 0.5 [0.0,0.3] 0.0 0.82 1.00
0.5 0.5 [0.0,0.3] [0.0,0.1] 0.81 0.99
0.5 0.5 [0.0,0.3] [0.0,0.2] 0.81 0.97
0.5 0.5 [0.0,0.3] [0.0,0.5] 0.79 0.86

0.5 1.0 [0.0,0.3] 0.0 0.51 1.00
0.5 1.0 [0.0,0.3] [0.0,0.1] 0.50 0.98
0.5 1.0 [0.0,0.3] [0.0,0.2] 0.49 0.89
0.5 1.0 [0.0,0.3] [0.0,0.5] 0.46 0.57

1.0 1.0 [0.0,0.3] 0.0 0.53 1.00
1.0 1.0 [0.0,0.3] [0.0,0.1] 0.52 0.91
1.0 1.0 [0.0,0.3] [0.0,0.2] 0.51 0.72
1.0 1.0 [0.0,0.3] [0.0,0.5] 0.48 0.27
Var(X1) = Var(X2) = 1.0

Equation (3.4) shows that if both the measurement error correlationρu,i and the variancesσ 2
u1, σ 2

u2 andσ 2
x1

are constant across studies, then the resulting two-stage estimate forβ2 will also be unbiased. However, if
the second term on the right-hand side of (3.4) varies significantly across studies, the resulting two-stage
estimator that regresseŝδ1i on γ̂ ∗

1i will be biased. Because the second stage simply relies on least squares,
this bias has a simple analytic form. Again assuming that city-specific sample sizes are large enough so
that the sampling error in̂γ ∗

1i is neglible, the expected value ofĉ = (̂c0, ĉ1) is

(
WTW

)−1
WTv (3.5)

where thei th row of W is (1, wi ), wherewi is the expectation given in (3.4), and thei th element ofv is
α (β1 + β2γ1i ).
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544 J. SCHWARTZ AND B. A. COULL

Contrast this expectation to the traditional two-stage approach that first fits the full model to each city
separately. IfΣx,i andΣu,i are the variance–covariance matrices forXi andUi , respectively, then the
expected value of the city-specific estimator is

(β1, β2)Ci , (3.6)

whereCi = Σx,i (Σx,i + Σu,i )
−1 (Carrollet al., 1995). When the city-specific sample sizes are large, we

can think of the full multilevel estimator as an average of these biased city-specific estimators.
Expression (3.5) demonstrates that when a regression coefficient is zero, the slope estimator for

that coefficient is unbiased even in the presence of correlated measurement error. This is a major
advantage of this estimator in the regulatory context. To investigate this bias for non-zero values of the
coefficients, we followed Zegeret al. (2000) and compared (3.5) and the average (over city) of (3.6)
in the presence of correlated measurement error. We assumed that (1) we have data from 10 cities (2)
Var(X1) = Var(X2) = 1.0, and (3) both the correlationρx,i among the two exposure variablesX1 and
X2 and the correlationρu,i among the two measurement errors vary uniformly within specified intervals.
Table 1 presents results. We see that, as the theory suggests, when the amount of heterogeneity in the
correlation betweenU1i andU2i is small, the proposed slope estimator is biased only slightly. In particular,
the proposed estimator outperforms the approach based on the full model except in cases in which the
amount of heterogeneity in the correlationsρu,i is large, the range of slopesγ1i relating the two exposures
is small, and the measurement error variances are large. In all cases examined, the proposed estimator
is biased downward, and we observed the same general patterns for negativeρu,i and other ranges of
ρx,i . Furthermore, these calculations agree with those of Zegeret al. (2000), who noted that, even for
the estimators based on the full model, estimates are not likely to incur upward bias unless substantial
correlation exists either between the measurement errors or the exposures themselves. For instance, when
ρu,i = −0.95σ 2

u1 = 2.0 andσ 2
u2 = 0.2 andρx,i varies uniformly between 0.0 and 0.3, the expected value

of the estimator forβ2 based on the full model is 1.04.
The above considerations suggest that in the presence of small amounts of measurement error

correlation, our proposed two-stage approach remains essentially unbiased. In the specific case of air
pollution studies, there are now limited data on the magnitude of these correlations. We examined data
from Sarnatet al. (2001), who measured personal exposure to multiple pollutants simultaneously in 56
subjects in Baltimore, MD. Defining the difference between personal and ambient pollution measurements
as the exposure error, we found the correlation between measurement error in PM2.5 and other pollutants
to be quite low, with a maximum correlation of 0.18 between the errors in PM2.5 and NO2. In order
to investigate how these measurement errors vary across study, we compared these correlations to ones
observed in recently collected data from Boston, MA. These unpublished correlations were similarly low,
with the maximum correlation of 0.17 again corresponding to the pair of measurement errors associated
with PM2.5 and NO2. Thus, in the air pollution context, early data from two cities suggests that the
homogeneous measurement error correlation assumption may be reasonable, although more studies are
necessary to confirm this observation.

3.3 Heterogeneous effects model

Often the mean number of events per day differs substantially across communities, as do the seasonal
and weather patterns, making an overall pooled analysis inappropriate. For such situations, consider the
heterogeneous effects model

Yit = β0i + β1i X1i t + β2i X2i t + ε1i t (3.7)
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where

βi = (β0i , β1i , β2i )
T ∼ N


β,


 σb0 σb0σb1ρb,01 σb0σb2ρb,02

σb0σb1ρb,01 σ 2
b1 σb1σb2ρb,12

σb0σb2ρb,02 σb1σb2ρb,12 σ 2
b2





 ,

with β = (β0, β1, β2)
T. In the standard two-stage approach, the first stage estimates a separate regression

for each location. In the second stage, these results are pooled to obtain an overall estimate:

β̂i = β + bi + ν i ,

wherei = 1, . . . , N , β̂i is the relative risk in cityi , β is the mean underlying risk,bi is the random
between cities effect, andν i is the known within-study error. It is common in this second stage of analysis
to consider additional city-specific covariates that are potential effect modifiers that explain some of the
random city-to-city variation inβi . These predictors could be characteristics of the populations in the
individual studies or differences in the quality of exposure data. For simplicity of presentation we suppress
these second stage covariates. Methods for fitting such models have been well-described (DerSimmonian
and Laird, 1986; Berkeyet al., 1995). Tostesonet al. (1998) noted that, in the presence of measurement
error, the ‘naive’ estimator that ignores the measurement error incurs bias for this model as well.

Consider the meta-regression approach where we regressY on X1 andX2 on X1 individually for each
location. Following the arguments provided in the previous section, we have

E(γ̂ ∗
1i ) = αγ1i

and

E (̂δ∗
1i |βi ) = α(β1i + β2iγ1i ).

This last equation yields

E (̂δ∗
1i ) = E

[
E (̂δ∗

1i |βi )
] = α(β1 + β2γ1i ).

Thus, regressinĝδ∗
1i onγ ∗

1i once again yields a consistent estimator ofβ2.

4. A SIMULATION STUDY

The above analytical considerations are still restrictive in that we only consider Gaussian outcomes
with two predictors. However, it demonstrates that the three estimates of the effects of the correlated
exposures behave differently in the presence of measurement error, and that the meta-regression-based
estimates may be less prone to bias.

In the mortality examples in Section 5 the response is often a count (number of deaths each day in a
community) and so Poisson regression with a log link is appropriate. However, measurement error models
are more complex in the Poisson setting (Zegeret al., 2000). To examine the properties of these estimators
in this setting, we conducted a simulation study. Specifically, we focused on the scenario in which there
is more measurement error in one variable than another, as this case is common in exposure assessment
scenarios. In addition, in view of the arguments presented in Section 3.2, we also consider the case with
correlated measurement error.

Environmental epidemiology typically involves small relative risks of common outcomes. Thus, we
used small relative risks in simulations to ensure that conclusions would be valid even in this more
challenging situation. A baseline simulation consisted of the following:
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Table 2. Settings for simulation scenarios of Poisson health data with two covariates. Parameters
for each city were generated uniformly from a given interval

Number of Baseline Range for Range for Range for Range for
Scenario cities count β1 β2 ρx,i γ1i ρu,i

a 10 22 0.05 0.05 0.8 8-fold 0.0
b 10 22 0.05 0.05 0.6 8-fold 0.0
c 10 22 0.05 0.05 0.8 3-fold 0.0
d 10 22 0.05 0.05 0.6 3-fold 0.0
e 20 22 0.05 0.05 0.8 8-fold 0.0
f 10 22 0.05 0.05 -0.8 8-fold 0.0
g 10 5 0.05 0.05 0.8 8-fold 0.0
h 10 22 0.05 0.05 [0.7,0.9] 8-fold 0.0
i 10 22 [0.035,0.065] [0.035,0.065] 0.8 8-fold 0.0
j 10 22 [0.035,0.065] [0.035,0.065] [0.7,0.9] 8-fold 0.0
k 10 22 [0.035,0.065] [0.035,0.065] [0.7,0.9] 8-fold [0.0,0.2]
l 10 22 0.05 0.0 0.8 8-fold 0.0
m 10 22 [0.035,0.065] 0.0 [0.035,0.065] 8-fold 0.0

1. Two exposure variables were simulated from a multivariate normal distribution with 2000 obser-
vations, and mean zero. The correlation between the two variables was set to either 0.8 or 0.6.
The slope (γ1) of the relationship between the two exposures was randomly varied over a range of
either 3-fold or 8-fold by choosing the standard deviation of one of the exposures from a uniform
distribution, while fixing the standard deviation of the other exposure at one.

2. A random Poisson count was simulated using the two exposures, with a true log relative risk of
0.05 per one standard deviation change in exposure for each variable and a baseline of 22, which is
typical of the daily counts seen in air pollution studies.

3. Measurement error was then added to each variable, with a mean of 0 and a standard deviation of
0.3 of the standard deviation of the first exposure, and 0.6 of the standard deviation of the second
exposure. This yields a dataset(x111, x211, y11),. . . ,(x11T1, x21T1, y1T1) for the first study.

4. Poisson regressions were fit to estimate the log relative risk of each exposure in a two-exposure
model and in single exposure models.

5. The above was repeated 10 times and hierarchical models were used to estimate the effect of each
exposure, using the standard, intercept and slope methods. This completed a single simulation of a
10-study hierarchical model.

6. The above set of simulations was repeated 500 times for each scenario.

Based on this overall strategy, we investigated 13 scenarios, denoted as (a)–(m), by varying either the value
of regression coefficients, the amount of heterogeneity in these coefficients across city, the correlation
between the two exposures, and the amount of heterogeneity of the slopes characterizing these correlations
across city. Table 2 lists settings of each of these choices for each scenario.

Figure 1 shows the median and empirical 5th and 95th percentiles for the simulated estimators
for scenarios (a)–(k). The first, second and third intervals for each scenario represent results for the
standard, intercept, and slope estimator, respectively. The upper panel of the plot shows results forβ̂1,
whereas the lower panel shows results forβ̂2. The general pattern illustrates the well-known phenomenon
that the standard estimator can incur upward bias for the coefficient associated with the exposure with
less measurement error. Although this bias is larger than Monte Carlo error for several scenarios, the
magnitude of this bias is modest. This accords with the results of Zeger and co-workers (2000), who
found relatively pathological patterns were needed to produce large upward biases.
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Fig. 1. 5th, 50th, 95th percentiles of simulated estimates from simulation scenarios (a)–(k) in Table 2. For each
scenario, the first, second and third intervals represent the standard, intercept and slope estimates, respectively.

In contrast, the bias incurred by the intercept estimate is still biased toward the null for the better-
measured exposure. The slope estimates, however, are unbiased for both exposures. These improvements
come at the price of a modest increase in the variance for the intercept estimate, and a somewhat larger
increase in the variance for the slope estimate. The main exception to this rule is the case of a negative
correlation among the two exposures, in which the standard estimator incurs significant downward bias
for both coefficients.

Reducing the correlation between exposures from 0.8 to 0.6 (going from scenario (a) to scenario (b),
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Fig. 2. 5th, 50th, and 95th percentiles of simulated estimates from simulation scenarios (l)–(m) in Table 2. For each
scenario, the first, second and third intervals represent the standard, intercept and slope estimates, respectively.

Table 3. Settings for simulation scenarios of Poisson health data with three covariates.
Parameters for each city were generated uniformly from a given interval. All scenarios used

a baseline count of 22

Number of Range for Range for Percentage Range for Range for
Scenario cities β1 β2 of X3 ρx,i γ1i ρu,i

n 10 0.05 0.05 0.25 0.8 8-fold 0.0
o 10 0.05 0.05 0.50 0.8 8-fold 0.0
p 10 [0.035,0.065] [0.035,0.065] 0.25 0.8 8-fold 0.0
q 20 [0.035,0.065] [0.035,0.065] 0.50 0.8 8-fold 0.0

and from scenario (c) to (d), for instance) essentially eliminates the risk of overestimating the effect of
X1 using any of the three methods. However, the downward bias inX2 remains substantially larger than
for X1 when we use the two-pollutant and intercept estimates. Again, the slope estimate is unbiased. In
scenarios having a narrower range of slopes between the two exposures, the intercept estimate avoids
upward bias and the slope estimates are unbiased, but these estimates have larger variances than those
where the range of slopes was greater. Results from scenarios (i)–(k) demonstrate that, in the presence
of city-to-city heterogeneity in health effects, the same general relationships among the three estimators
remained the same, with only an increase in the variability of the estimates. Scenario (k) also suggests
that, as in the normal response case, the intercept and slope estimates incur small downward bias in the
presence of heterogeneous measurement error correlation, although this bias is less than that incurred by
the full model.

Figure 2 illustrates the performance of the three estimators when only one of the exposures is causally
related to the outcome. In both cases, the two-exposure model shows upward bias in the non-causal
exposure. In fact, the 95% confidence interval does not include 0, so there is a high chance of falsely
attributing an association to the non-causal variable. This risk is eliminated by the use of either the
intercept or slope estimates.

Wealso examined several other scenarios not presented in Figures 1 and 2. For instance, it is possible
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Fig. 3. 5th, 50th, and 95th percentiles of simulated estimates from simulation scenarios (n)–(q) in Table 2. For each
scenario, the first, second and third intervals represent the standard, intercept and slope estimates, respectively.

that there are some biases that are hard to detect using small effect sizes. If we increase the effects to
0.50 per standard deviation change for both exposures, the results are essentially unchanged. We also
considered confounding by additional covariates. Motivated by the examples in Section 5, we constructed
a seasonally varying covariate. For each simulated data set, we generated a new variableX3i t from a
N(0.5 × cos(2t/365), 0.5) distribution,t = 1, . . . , 2000, and added either 0.25× X3i t or 0.5× X3i t

(denoted by ‘percentage ofX3’) to X1i t and X2i t . We then simulated mortality counts from a Poisson
model with means

λi t = 22× exp(0.05× X1i t + 0.05× X2i t + 0.05× X3i t ). (4.8)

The standard model estimates were computed from models with all three covariates in the first stage. The
slope and intercept estimates were computed by estimating models for the outcome that depended on the
seasonal covariate (X3) and one of the other two exposures. The estimated regression coefficient for that
exposure was regressed against the regression coefficient relating the two exposures, as before. Table 3
shows the simulation settings for the three-covariate case. Figure 3 demonstrates that the general patterns
observed in the two-covariate case hold in this case as well, with the slope estimates appearing unbiased.
In addition, in the three-covariate setting in which only one of the estimates is causal, the estimate for the
effect of X2 remains biased upward, while the potential for a false positive finding is avoided using either
of the alternative estimators.

Finally, a key assumption of the proposed two-stage approach is that the attentuation factorα is
constant across cities. We ran an additional simulation to check the effect of violations of this assumption
on the performance of the estimators in the Poisson setting. In particular, otherwise using scenarios (h)
and (j) from Table 2, we constructed two new scenarios [denoted (h′) and (j′)] with city-specificαi by
multiplying σu1 andσu2 by a city-specific variate uniformly generated from [0.7, 1.0]. Figure 4 shows
that this violation has minimal effect on the performance of all three estimators in these settings, as results
are essentially identical to those from scenarios (h) and (j) in Figure 1.
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Fig. 4. 5th, 50th and 95th percentiles of simulated estimates from simulation scenarios (h′)-(j′) assuming heteroge-
neousαi over cities. For each scenario, the first, second and third intervals represent the standard, intercept and slope
estimates, respectively.

5. APPLICATIONS

5.1 Effects of particles on daily deaths

The utility of these alternative approaches can be illustrated using two examples of interest. In 1997,
the US Environmental Protection Agency promulgated a standard for airborne concentrations of particles
less than 2.5µm in aerodynamic diameter (PM2.5, or fine particles) (EPA, 1997). This was based on
evidence that serious health effects were seen for airborne particles at concentrations well below the
previous standards (Popeet al., 1995). However, that previous standard governed all particles with
aerodynamic diameter less than 10µm (PM10). EPA cited recent evidence indicating that the smaller
particles (PM2.5) were more toxic, and focused the new regulations on them. One important study
in reaching this conclusion examined the association between daily concentrations of both PM2.5 and
particles with sizes between 2.5 and 10µm (usually referred to as coarse mode particles) and daily deaths
in 6 US cities (Schwartzet al., 1996). That study reported a second-stage analysis of models containing
concentrations of particles in both size ranges; that is, it used the standard model for two covariates. There
was a positive association between PM2.5 and daily deaths (effect= 0.0149, se= 0.00197 for a 10
µg m−3 increase). However, the association with coarse model particles was negative and small (effect
= −0.00206, se= 0.00491). This paper was criticized by others, who argued that greater measurement
error in coarse mode particle measurements could have transferred some of the effect to the fine particles,
whereas in reality they were more nearly equipotent. This had clear implications for which sources should
be controlled to reduce risk. The slopes between PM2.5 and coarse mass vary by a factor of four across
the six cities. Thus, using the slope estimate approach, we have re-examined this issue. Table 4 shows
the original estimates for the effects of PM2.5 and coarse mode particles on daily deaths, and, as an
alternative, the slope estimates for each pollutant, which should be unbiased by measurement error. These
slope estimates suggest that both original estimates were biased toward the null by their measurement
error, rather than one being biased upward. The effect estimate for PM2.5 is increased, and the effect
estimate for coarse particles grows more negative. This may reflect the association of course particles
with windy days, which can reduce combustion pollutants.
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Table 4. Estimated effect and associated standard errors of a 10
µg m−3 increase in fine and coarse particles on daily deaths in

six US cities

Particle measure Standard estimate (S.E.) Slope estimate (S.E.)
PM2.5 0.0149 (0.00197) 0.0342 (0.00287)
Coarse Mass −0.00206(0.00491) −0.0235 (0.00616)

Table 5. Estimated effect and associated standard errors of an increase
in gaseous pollutants on daily deaths in 10 US cities using the slope

estimator

Pollutant β̂ (S.E.) Range of PM10 Slopes
SO2 (10ppb) 0.00259 (0.00384) 0.08 – 1.24
Ozone (10ppb) −0.00227 (0.00312) −0.22 – 1.07
Carbon Monoxide (1ppm) −0.00711 (0.00492) 0.013 – 0.080

5.2 Effect of gaseous air pollutants on daily deaths

Another recent air pollution study analyzed the association between particulate air pollution and daily
deaths in 10 US cities (Schwartz, 2000) with daily PM10 monitoring. Positive associations were seen for
PM10. No results were reported for gaseous air pollutants, however. Such associations can be quickly
assessed using a slope estimate relating each of the other pollutants to PM10. Moreover, the original paper
estimated effects in each location separately for the warm and cold seasons. This provides twenty estimates
for the second stage, and increases the variability in the slopes between the pollutants, which vary
substantially by season in many locations. While somewhat noisier than two-pollutant model estimates,
the freedom from bias in the presence of measurement error makes these estimates attractive. These
estimates are shown in Table 5, which also shows the range of slopes between PM10 and the gaseous
pollutants. There is little evidence for any association of SO2 or ozone with daily deaths, and only very
weak evidence for a protective effect of carbon monoxide.

6. DISCUSSION

We have demonstrated that there are alternative approaches to estimating the effect of two exposures
on an outcome, which, in the almost inevitable presence of measurement error and the context of multiple
studies or subgroups, may have some advantages over traditional estimators. The requirement for multiple
studies is not much of a limitation if we expect the two exposures to be moderately well correlated.
Multiple studies, or large datasets (which in principle can be subdivided) would be necessary in any
event to obtain stable estimates. We have shown analytically that in the case of Gaussian data, the slope
estimator is unbiased and the intercept estimator is free from upward bias as long as the attentuation
factor arising from measurement error and the measurement error correlation are constant across studies.
Thus, the methods do not require the measurement error for different exposure to be independent. Limited
data from two cities suggests these assumptions may be plausible in air pollution epidemiology. Future
research should focus on confirming these assumptions in a larger sample of cities, as well as developing
ways to diagnose variations in measurement error across locations.

For non-normal responses, simulations suggest that the slope estimator is unbiased and the intercept
estimate is free from upward bias, even in the presence of other correlated covariates and true hetero-
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geneity. This is notable, and suggests the approach could have important applications in epidemiology.
The ability of either the intercept and slope estimates to reduce or eliminate the risk of overestimating the
effect of one exposure, and particularly to avoid falsely concluding that one exposure is associated with
the outcome, may be quite valuable. Further, simulations suggest that the proposed estimators perform
well even when the assumption of homogeneous attenuation factors is violated. The proposed estimators
pay a price in precision, however. The slope estimates become more variable as the correlation between
the exposures falls. Thus, in the case of mildly correlated variables, the methods should be used with
caution. This difference in precision diminishes when the number of cities grows to be approximately
20. Thus, given the substantial amount of exposure misclassification that exists in many epidemiological
studies, it appears to be a valuable tool in the epidemiologist’s portfolio.

One additional benefit of the method is the reduced likelihood of a false positive finding for a non-
causal exposure in the presence of measurement error. Recent studies of air pollution and daily death
have examined as many as five different pollutants. It is unlikely that all of these are causally related to
mortality. The simulations demonstrate that the risk of a falsely positive association for the non-causal
pollutant is substantially reduced using either of the two alternative models. This value is illustrated by
two applications. The first shows that, quite opposite from being upwardly biased, the coefficient of PM2.5
appears to have been downwardly biased in the original report of Schwartzet al. (1996). While debate over
this issue has generated a substantial number of exposure assessment studies, this alternative approach
appears straightforward. The finding that gaseous air pollutants are not associated with daily deaths in
a multi-city study after adjustment for PM10 accords with the results recently reported by Sametet al.
(2000) using the standard approach in 20 cities. These results replicate those in a different sample of
cities. More importantly, they add some assurance that Samet and co-workers’ results were not driven by
differential measurement error among the pollutants.
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