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SUMMARY

We propose a semiparametric Bayesian model, based on penalized splines, for the recovery of the time-
invariant topology of a causal interaction network from longitudinal data. Our motivation is inference of
gene regulatory networks from low-resolution microarray time series, where existence of nonlinear inter-
actions is well known. Parenthood relations are mapped by augmenting the model with kinship indicators
and providing these with either an overall or gene-wise hierarchical structure. Appropriate specification of
the prior is crucial to control the flexibility of the splines, especially under circumstances of scarce data;
thus, we provide an informative, proper prior. Substantive improvement in network inference over a linear
model is demonstrated using synthetic data drawn from ordinary differential equation models and gene
expression from an experimental data set of theArabidopsis thalianacircadian rhythm.

Keywords: Circadian clock; Gibbs variable selection; Markov process prior; Nonlinear gene regulatory networks;
P-Splines regression; time course gene expression data.

1. INTRODUCTION

Our objective is the inference of gene regulatory networks (GRNs) from time series data; specifically,
inferring the gene regulatory kinships for a particular process. To this end, we can conceptualize a GRN
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Semiparametric GRNs 683

as a directed graph, with its nodes representing genes and the edges gene–gene regulation. Bayesian net-
works (BNs) have been used previously in gene network determination (Friedmanand others, 2000).
However, it is well known that biological processes have feedback loops and thus the validity of BNs is
questionable when modeling such systems. Dynamic Bayesian networks (DBNs) have been proposed for
modeling time course (longitudinal) gene expression data (Zou and Conzen, 2005). These can be thought
of as “unfolding” a BN for every time point, and when folding back the network, selfregulation and cliques
may be obtained. Formally, a DBN is characterized by a set of conditional relations,p(yt+1|yt ). In the
case of an (auto)regression-based DBN, these relations can be written asyt+1

i = fi (yt ) + εt+1
i , whereyt

i
is the expression measurement of genei = 1, . . . , G at timet = 1, . . . , T , yt = yt

1, yt
2, . . . , yt

G andεt
i is

an idiosyncratic error term. The functional forms of the interactions,fi (∙), are usually unknown and typi-
cally nonlinear due to the complex biochemistry behind gene regulation. Whether or not∂ fi (yt )/∂yt

j ≡ 0
defines the topology of the network. The interaction topology is key in GRN, as it determines the causal
relations in the gene regulatory dynamics for a given biological process. Although gene regulatory rela-
tionships can change in time, especially when dealing with varying experimental conditions (Ahmed and
Xing, 2009), we assume that the data have been produced in controlled conditions and thus regulation can
be suitably captured with a time-invariant network topology.

A flexible way of including unknown nonlinearities, and thus avoiding model selection issues, is to
use a semiparametric specification by letting the interactions be described by spline functions. The use
of splines in the estimation of GRNs has been advanced byi.a. Gustafssonand others(2005) andKim
and others(2004). A fundamental problem when using spline regression is knot selection that greatly
influences the curve fitting. One efficient solution is to select a few well-placed knots for a given spline
degree. This requires determining both the optimal number and the position of the knots, which is typically
addressed by means of a transdimensional Monte Carlo Markov chain (MCMC) scheme (Ferreiraand
others, 2008; Denisonand others, 2002) or by cross validation (Ruppert, 2002; Friedman, 1991). The
efficiency gained in the modeling may be offset by mixing problems in the sampler, due mainly to the
vast space that must be explored and the associated computational problems, or by the unwieldy amount
of comparisons required for cross validation.

Our approach avoids such issues by relying onP-splines (Eilers and Marx, 1996; Lang and Brezger,
2004), which are characterized by specifying a rather large number of evenly spaced knots. Then, in order
to avoid overfitting and also to control for the effective number of parameters to be estimated, a penalty
that shrinks the spline coefficients toward the origin is specified. Such a penalty depends crucially on a
so-called smoothness parameter. In this paper, we propose a fully Bayesian setup for dealing with this
smoothness parameter and discuss the implications of alternative prior specifications for this key model
component.

The proposed model is presented in Section2, where we also discuss the prior specification.
Implementation is briefly described in Section3. Section4 illustrates the application of our model to
3 examples, where we reconstruct the corresponding networks and assess their accuracy. Conclusions
and possible extensions are given in Section5. Data sets and Matlab code used in the paper are avail-
able in the supplementary material available atBiostatisticsonline and inhttp://majuarez.staff.shef.ac.uk
/materials/index.html.

2. THE MODEL

Let yt
g denote the gene expression level of geneg = 1, . . . , G, measured at timet = 1, . . . , T . We

propose to model it asyt
g = ηt

g + εt
g, whereηt

g is the predictor andεt
g is an idiosyncratic error term,

centered at zero. We assume thatηt
g is determined by some unknown subset of the genes at the previous

time point, and that the error terms are Gaussian and independent for all genes and time points. Thus, we
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684 E. R. MORRISSEY AND OTHERS

can write it as

yt
g = ηt

g(y
t−1; θθθg) + εt

g, εt
g ∼ N(εt

g|0, λg) ind., (2.1)

whereyt = {yt
1, . . . , yt

G}, θθθg is a set of parameters indexingηt
g(∙; ∙) andλ−1

g = Var(εt
g).

In order to accommodate nonlinearities, the regulatory relationships are modeled by

ηt
g = fg1(yt−1

1 ) + fg2(yt−1
2 ) + . . . + fgG(yt−1

G ) + μg, (2.2)

whereμg is a gene-specific constant term andfgi (yi ) =
∑M

k=1 β
g
ik Bik(yi ). Here,{Bik(yi )} are M B-

spline basis functions of degreel defined over the set ofr evenly spaced knots,κκκ i = {κi 1, . . . , κir }, with
min{yi } = κi 1 < κi 2 < . . . < κir = max{yi }, andM = r + l . By defining the spline design row vectors
Xt

j ∈ RM , such thatXt
j (k) = Bjk(yt

j ), we can rewrite the predictor in (2.1) asηt
g = Xt−1

1 βββ1g + . . . +

Xt−1
G βββGg + μg, with βββ jg = {βg

j 1, . . . , β
g
j M } ∈ RM a column vector of coefficients forj = 1, . . . , G. If

‖βββ jg‖ ≈ 0, there is negligible influence of genej on geneg, and thus the “link”j → g is off. If the link
is on, then we say thatj is a “parent” ofg.

Stacking the bases and the coefficients intoXt = {Xt
1, . . . , Xt

G} ∈ RMG andβββg = {βββ1g, . . . , βββGg} ∈
RMG, respectively, and after further stacking the equations over time, we have

yg = μμμg + Xβββg + εεεg, g = 1, . . . , G, (2.3)

whereμμμg = μgιιι
′
T , with ιιιT a row vector of ones of sizeT andX = {X1, X2, . . . , XT }′ a bases matrix

of sizeT × MG. This model is unidentifiable given that every potential parent spline contributes with its
own constant term. To correct for this, we add the identifiability restrictionιιιT × (Xβββg) = 0. We describe
its implementation within the sampling scheme in the supplementary material available atBiostatistics
online.

As it stands to estimate the 2+ M ×G parameters of each spline-regression component in (2.3) would
require in excess of this number of data points per gene. If the number of time measurements is relatively
small, one would need to select a rather small number of knots, thus effectively reducing the capacity of
the splines to capture nonlinearities. We address this issue by performing a Gibbs variable selection as
in Smith and Kohn(1996). The model is augmented with the indicatorsγjg, such thatβ̃ββ jg = γjg × βββ jg,
whereγjg = 1 if the link is on andγi j = 0 if the link is off and substituting these new coefficients into
the model.

The practical advantage of augmenting with the indicators is that it allows us to make inference about
the network topology, now parameterized by the connectivity matrix,0 = {γjg}.

2.1 The prior

We use conditionally conjugate priors where suitable, which simplifies the sampling algorithm. We take
particular care when specifying a shrinkage or penalty prior for the spline coefficients, as this determines
the smoothness of the functional form fitted.

Precisions. We use conjugate, i.i.d. gamma priors, Ga(λg|aλ, bλ), on the gene precisions,λλλ =
{λ1, . . . , λG},

π(λλλ) =
G∏

g=1

baλ
λ

0[aλ]
λaλ−1

g exp[−bλλg]. (2.4)
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Constant term. An independent Gaussian prior,N(μμμ|0, τμ I ), for the gene-specific constant,μμμ = {μ1,
. . . , μG}

π(μμμ) =
( τμ

2π

)G/2
exp

[
−

τμ

2
μμμ′μμμ

]
. (2.5)

Network structure. We provide 2 alternatives for modeling the network topology. The first is to define the
“overall network connectivity,”ρ, asP[γjg = 1] = ρ and complement it with a Beta prior, Be(ρ|aρ, bρ).
The full specification is then,

π(γjg|ρ) = ργjg (1 − ρ)1−γjg , g, j = 1, . . . , G, (2.6)

π(ρ) = [B(aρ, bρ)]−1ρaρ−1(1 − ρ)bρ−1 0 < ρ < 1. (2.7)

It is well known that GRNs often present hub-like structures where a handful of genes control the
regulation process almost completely and the rest of the genes have very few children, if any (see, e.g.Seo
and others, 2009, and references therein). One can capture such features by allowing for “parent-wise
connectivity,”P[γjg = 1] = ρ j and complementing it with independent priors, that is,

π(γjg|ρ j ) = ρ
γjg
j (1 − ρ j )

1−γjg , g = 1, . . . , G, (2.8)

π(ρ j ) = [B(aρ, bρ)]−1ρ
aρ−1
j (1 − ρ j )

bρ−1 j = 1, . . . , G. (2.9)

The hyperparameters{aρ, bρ}, convey our prior knowledge about the connectivity of the network
and can be set accordingly. For general purposes, we recommend setting both equal to 1/2, as this is
the reference prior for a Bernoulli experiment (Bernardo and Smith, 1994). If biological knowledge of
the process demands it, it is straightforward to fix any link to be deterministically on (off) by setting
γrl = 1(0), modifying the prior accordingly.

Spline coefficients.We use a second-order Markov process prior on the coefficientsβββ jg to shrink them
toward the origin.

π(βββjg|τjg) = N(βββjg|0, τjgK ), (2.10)

whereτjg are the smoothness parameters addressed below. The structure of the covariance matrix,K =
{Kkl}, is constructed from the second-order differences between adjacent coefficients, that is,βk =
2βk−1−βk−2, omitting link identifiers for simplicity (see supplementary material available atBiostatistics
online). The prior for the 2 remaining coefficients,{β1, β2}, is discussed below.

Smoothness parameters.In the case of small data sets, the specification of the smoothness parameters,
τjg, becomes crucial as these largely determine the fitting of the spline to the data. In the limit, when
τjg → 0, an interpolating spline is fitted, while asτjg → ∞ a straight line is rendered.

A conditionally conjugate prior is the product of independent gamma distributions, Ga∙|aτ , bτ ). This
specification concentrates mass aroundaτ /bτ and has a relatively large right tail for small values ofbτ .
It is common to find in the literatureaτ = bτ and set to quite small values, for example, 0.001. This
indeed is quite flat over a large range ofτ , but has a mode at zero effectively giving relative importance to
rougher curves and thus favoring overfitting when the data are only weakly informative. On the other hand,
if mass is carried toward larger values ofτ—thus favoring smoother curves—the gamma distribution tails
off quite quickly to the left and experiences difficulties capturing nonlinearities, (see, e.g.Jullion and
Lambert, 2007).

In order to obtain a more flexible prior specification, while retaining the conditional conjugacy, we also
tried a gamma scale mixture of gammas. The resulting gamma–gamma distribution (Bernardo and Smith,
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686 E. R. MORRISSEY AND OTHERS

1994, p. 120;Zellner, 1971, p. 376), can achieve a larger spread than the gamma and also has a heavier
right tail. It may also not have any finite moments for certain parameter values. Despite these desirable
characteristics, we found that the heavy right tail of this prior, combined with the flatness of the likelihood
in regions whereτ is very large can lead to identifiability issues. This can be understood since there exists
a threshold value,τ ?, for which the fit of the spline is practically linear and thus indistinguishable for any
τ > τ?.

This lead us to propose an inverted Pareto prior, Ip(∙|aτ , bτ ):

π(τjg|aτ , bτ ) =
aτ

bτ

(
τj g

bτ

)aτ −1

, τjg 6 bτ , aτ > 0. (2.11)

We restrictaτ > 1, to prevent concentration of mass near the origin. Settingaτ = 1 is tantamount to
putting a uniform prior on(0, bτ ). The prior is concave for 1< aτ 6 2 and convex foraτ > 2, gathering
mass closer tobτ asaτ grows, thus favoring smoother curves. Values ofaτ > 3 allocate too much mass
close tobτ and thus are not advisable, unless there is prior evidence for high levels of linearity. The cutoff
valuebτ can be interpreted as that level ofτ after which the likelihood is numerically invariant, that is, the
fitted curve is practically linear.

2.2 Posterior propriety

In most of our intended applications, we will have a limited number of time measurements compared to the
number of genes. Given that an improper prior will yield an improper posterior if the number of parents
for any given gene exceedsT/M (see the supplementary material available atBiostatisticsonline), we
construct a proper prior by supplying (2.10) with an independent specification for the first 2 coefficients,

π(β1, β2) = N(β1|0, k1)N(β2|0, k2). (2.12)

To approximate the behavior of the improper prior, we could letk1, k2 → 0. In situations where
the data are scarce, we do not recommend this, as it will affect the stability of the posterior (Sun and
Speckman, 2008). In our applications, we setk1 = k2 = τ0.

3. IMPLEMENTATION

3.1 P-splines model algorithm

As there is no closed-form expression for the posterior numerical methods are needed. We propose a
Metropolis-within-Gibbs scheme that leads to a dramatic decrease in autocorrelation of the chain, com-
pared to a Gibbs move. Details are given in the supplementary material available atBiostatisticsonline.

3.2 A linear model

In order to compare the network retrieval power of the splines model, we constructed a fully parametric,
linear AR(1) model

yt+1
g = μg +

G∑

j =1

βjg yt
j + εt

g, (3.1)

with the same prior specification as above, deleting the irrelevant terms.
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4. ILLUSTRATIONS AND APPLICATIONS

First, we analyze 2 synthetic, discrete time data sets where the data generation mechanism and the topol-
ogy of the network are known. Second, we examine a synthetic data set comprising discrete time mea-
surements drawn from a continuous time ordinary differential equation (ODE) model of a circadian clock.
For our last example, we use microarray gene expression data from theArabidopsis thalianacircadian
clock. Details on the prior parameters specification are given in the supplementary material available at
Biostatisticsonline.

4.1 Discrete time synthetic networks

In order to assess the network topology recovery power of our model, we produced 2 synthetic, first-
order autoregressive processes. One has only linear and the second a number of nonlinear relations. In
the nonlinear case, all the functional relations were produced using Hill functions, except for the self-
interactions that are linear. In both cases, we setG = 16,T = 40, andρ ≈ 0.1.

When the topology of the network is known, we can use the receiver operating characteristic (ROC)
curve to assess graphically the retrieval performance of a model. A more formal comparison can be carried
out by calculating the area under the ROC curve (AUC) and the mean cross entropy (MxE). For the linear
data set, the AUC were 0.999 for the fully parametric model and 0.998 with the splines; and when fitting
the nonlinear data set, we obtained 0.728 and 0.912, respectively. In the linear network, the MxE was
0.042 when fitting the parametric model and 0.064 when fitting the splines; with Hill interactions the
values were 0.41 and 0.22, respectively. Thus, using these scores network topology retrieval from the
splines model is almost as good as that from the linear when the interactions are linear and outperforms
it when nonlinearities are present (ROC curves are shown in the supplementary material available at
Biostatisticsonline).

To further understand the differences between the inferred networks under either model, we plot in
Figure1, the partial and full reconstructions for gene 8’s trace in the nonlinear data set, along with the pos-
terior of the corresponding smoothing parameter. Both models provide similar predictions, as illustrated
by the full reconstructions that are practically undistinguishable (Figure1(d)). However, the way this fit
is achieved varies significantly. As expected, both models have a very similar fit for the self-regulation
(Figure1(a)). As the self-interaction is linear, the splines model fits it by allocating most of the poste-
rior mass of the corresponding smoothness parameter toward high values, depicted by the solid line in
Figure1(e). Gene 8 has one parent with a nonlinear interaction and the splines model is capable of re-
producing the Hill functional relationship quite precisely (Figure1(b)), by allocating almost all posterior
mass toward small values of the corresponding smoothness parameter, shown in Figure1(e) (dot-dashed
line). Obviously, the linear model cannot accommodate such behavior and may include spurious parents
in order to compensate for the lack of fit, as in this case, illustrated in Figure1(c). In contrast, the splines
model does not predict Gene 5 as a parent (solid line in Figure1(c)). Notice the mass allocation of the
self-regulation link (solid) in Figure1(e): it is basically drawn from the prior (dashed), illustrating that
our specification is adequate for linear relations to be reproduced accurately.

When the network topology—that is, the biological model—is fixed, we can compare the fit of al-
ternative statistical models using formal tools. We calculated the deviance information criterion (DIC)
obtained from the different data/model combinations used in this paper by fixing the network topology
to those links with posterior probability larger than 0.8 (Table1). In the linear data case, both models
produced similar estimates of the connectivity matrix and therefore their AUC and MxE scores are quite
close to each other. However, the DIC indicates that the linear model is preferred to the splines, mainly
due to the costs associated with the additional complexity of the splines model, unnecessary for this data
set. In contrast, the DIC from the nonlinear data set favors the splines model, granting the increase in
model complexity.
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688 E. R. MORRISSEY AND OTHERS

Fig. 1. Partial and full reconstructions of Gene 8’s trace using splines (solid) and linear (dashed) models. The circles
represent a scatter plot of the expression values of Gene 8 against 3 potential parents (Genes 8, 1, and 5) at the
previous time point. (a) Both models capture the linear self-regulation. (b) The true parent is predicted in both models,
while splines is able to reproduce the Hill functional relationship. (c) The linear model predicts one spurious parent.
(d) Trace reconstruction from both models is almost identical. (e) Marginal posterior distributions of the smoothing
parameter for the self-regulation (solid, prior dashed) and nonlinear parent (dot-dashed, prior dotted).

Table 1. Comparing model fit with a fixed network topology. DIC values obtained from the data sets used
in the paper when fitting the linear and the splines models. The network topology is fixed by selecting
those links with posterior probability above0.8. The model preferred by DIC is highlighted in boldfont

Data set Linear model Splinesmodel

Synthetic linear 2.02××× 104 2.56× 104

Synthetic Hill 3.01× 104 3.64××× 103

ODE data 2.44× 105 2.34××× 105

Microarray data 9.95× 103 1.93××× 103

4.2 Biological GRN: the plant Circadian clock

In the following sections, we focus on a partially known GRN, specifically the plantA. thalianacircadian
clock.Lockeand others(2006) developed an ODE model of the clock, which we use below for generating
synthetic observations. The current working biological model is due toMcClung (2008). Both models
include nodesX and Y, representing genes that are thought to be involved in the circadian clock, but
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whose identity remains unknown. These network models are shown schematically and further explained
in the supplementary material available atBiostatisticsonline.

Differential equation data. We generated data from the ODE model fixing the light source to be per-
manently on. The data were then subsampled, logged, and standardized. The resulting data set has 50
time points with a time spacing of 1 h. We present the results obtained using the parent-wise connectivity
structure (2.8)–(2.9). In order to interpret the output, rather than examining the ROC curves, we analyze
the inferred network at a given threshold. This is more convenient given that there are only a few genes
and therefore a more detailed comparison with the true network is possible. We plot the number of links
included in the predicted network against the posterior link probability when fitting the linear model,
Figure 2(a), and when using the splines model, Figure2(b). We use a cross (circle) for a correctly

Fig. 2. Network topology inference on the ODE circadian clock data. (a) The number of links predicted to be present
in the network versus posterior link probabilities estimated when using the linear model (LM) and (b) with the
splines model (SM). Crosses (circles) represent correctly (incorrectly) predicted links. (c) The network obtained
with a threshold of 0.8 using the LM and (d) when using the SM. Solid lines represent correct predictions, dashed
lines incorrect predictions, and thin lines correct predictions, but with the wrong sign.
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690 E. R. MORRISSEY AND OTHERS

(incorrectly) predicted link; for instance, the predicted network with the splines model using a thresh-
old of 0.85 would have 9 links (circles and crosses with link probability above 0.85 in Figure2(a)), 7 out
of these correct. It is apparent that the splines model produces a better separation in the link probabilities,
classifying all but one link into 2 populations: a low probability (below 0.2) and a high probability (above
0.8) group. This contrasts with the linear model Figure2(a) where almost 40% of the links are in the
ambiguous region between 0.2 and 0.8.

Using 0.8 as the threshold value, we plot the reconstructed networks for both models in Figure2(c)
and (d). The inferred network for splines (Figure2(d)) contains all correct links from the network,
except for the TOC1–Y link. There are 2 spurious links (LHY/CCA1–X and PRR7/PRR9–TOC1)
and 2 links with incorrect signs (LHY/CCA1–TOC1 and LHY/CCA1–Y). In addition to only having
half of the correct links, the inferred network for the linear model adds a large number of spurious
links (false positives). Again, we found cases where the splines model correctly predicts a single par-
ent using a nonlinear interaction, whereas the linear model predicts that link but adds extra spurious
links to improve the fit (not shown). Moreover, the DIC of the estimated network topology from the
splines model is smaller than that from the linear model at threshold 0.8 (see third row of
Table1).

Experimental data. We use our methods on gene expression time series forArabidopsisleaves generated
using microarrays and analyze the output using the parent-wise connectivity structure. The separation of
posterior link probabilities into groups is no longer as pronounced as in the synthetic data—see Figure3(a)
and (b). This may be due to the combination of a high level of noise and fewer time points. The networks
inferred by each model, using a threshold of 0.8, are shown in Figure3(c) and (d). All links predicted
by the splines model appear in the linear model reconstruction. However, the linear model predicts an
additional 2 parents for ELF4 and an additional 3 parents for LUX. Among those additional links are
TOC1–ELF4 and TOC1–LUX, which while we have marked as correct on the plot (for consistency with
the current working model), are probably incorrect. Those links were included in the accepted model as
an indication that TOC1 regulates some gene (X) that in turn regulates LHY, but neither of the genes are
predicted to regulate LHY. Furthermore, from the previous examples, it is clear that the linear model tends
to add spurious parents.

Although only mild nonlinearities are found, the DIC score indicates a better fit from the splines
model than the linear alternative for the given threshold (last row of Table1), suggesting that even mild
departures from linearity can have an important effect in model fit.

For network reconstruction, we have used a subjective choice for the posterior probability threshold.
Moreover, as our reconstruction is based solely on the individual link marginal probabilities, possible cor-
relations between these are disregarded. In order to provide a graphical representation of the uncertainty
in our network retrieval, in Figure4, we plot a heatmap with the distribution of the number of parents
for each gene in the clock (left), together with a heatmap with the marginal link probabilities of its top 4
potential parents (right). These complementary sources of information render a picture of the uncertainty
in the retrieval of the network topology. For instance, the splines model predicts one parent for LHY with
very high probability and there is only one potential parent with high marginal probability, suggesting a
very confident prediction; in contrast, the linear model predicts 1 or 2 parents with a mild probability (and
3 with a very slight probability), while one of the potential parents has a high marginal probability, there
are 2 more with intermediate marginal probabilities, suggesting an ambiguity in the identity of the second
potential parent. Overall, there is a shift to the left of the distribution for the number of parents from the
splines model compared to the linear model, strengthening the evidence for overfitting in the latter model.
Likewise, marginal link probabilities for the splines model seem to be higher over a smaller number of
potential parents, thus suggesting a decrease in the uncertainty in topology retrieval compared to the linear
model.
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Fig. 3. Network topology inference on the circadian clock microarray data. (a) The number of links predicted to be
present in the network versus posterior link probabilities estimated when using the LM and (b) with the SM. (c) The
network obtained with a threshold of 0.8 using the LM and (d) when using the SM. Solid lines represent inferred links
that are included in the currently accepted model (most of which have been experimentally confirmed) and dashed
lines inferred links absent in the accepted model (though not necessarily incorrect).

5. DISCUSSION

We have presented a fully Bayesian implementation ofP-spline based inference of a DBN within a
sparse connectivity context. Our motivation is the inference of GRNs from longitudinal data, for instance,
from microarray time series data. Despite being capable of measuring up to tens of thousands of genes
simultaneously, currently available microarray time series are typically shorter than 20 time points. This
introduces significant problems for analysis and modeling, particularly as it limits the complexity of the
models that can be used. We addressed this issue through use of spike-and-slab type priors that limit
the connectivity of the GRN. Within this context, we are able to increase regression model complexity,
designing a method for exploring whether nonlinear regulatory mechanisms are present in time series
data.
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692 E. R. MORRISSEY AND OTHERS

Fig. 4. Uncertainty inArabidopsiscircadian clock gene network reconstruction. On the left, a heatmap of the distri-
bution of the number of parents for each gene in the clock, estimated using microarray data with the linear (top) and
splines (bottom) models. On the right, a heatmap with the marginal probabilities of the top 4 potential parents.

Our model successfully identified nonlinear interactions on simulated data (both discrete time and
ODE models), while the corresponding DIC scores favored the estimated network topologies with the
splines model, for a given threshold, over the linear alternative. On simulated data with nonlinear inter-
actions, the inferred GRN under a linear model typically acquired additional parents, these incorrectly
predicted parents improved the fit to a similar quality to that achieved by theP-splines model. The
P-splines model also enhances network sparsity since an additional parent under a splines regression
model incurs a greater penalty than a parent with a linear functional dependence model given the higher
(model) complexity; thus even when the links are actually linear there is stronger control on the number
of parents. This compares to artificially imposed parent number penalization, for instance, through an
arbitrary weighting exp(−n) for n parents, as inKim and others(2004).

Assessing the uncertainty in network topology retrieval is an active field of research. We provide a
graphical representation that combines the information on the distribution on the number of parents for
each gene, with the marginal posterior probabilities of the most probable regulators. In our example using
microarray data fromA. thalianaleaves, joint inspection of these estimates suggests that the splines model
provides a more accurate network reconstruction compared to the linear model.

Use of splines in inference requires handling of their functional flexibility. We recommend that the
number of knots is much smaller than the number of time points; here, we presented results using 10
knots for a time series with 40–50 time points. We found that doubling the number of knots (20) gave
severe problems in the mixing of the chain, while using a smaller number (7) gave similar results. We
also use a prior on the coefficients that effectively controls the spline curvature. This entails choice of
the value of the smoothing parameterτ ; previous authors have optimized and fixed it before estimating
the regression. We propose a fully Bayesian approach, inferring it concomitantly with the regression and
performed a sensitivity analysis to confirm our prior is sufficiently weak, further confirming that linear
relations can be retrieved. Network connectivity and spline smoothness were regression/gene specific;
this allowed for both heterogeneity in the nonlinearity and the number of parents across the network. We
presented the results for parent-wise connectivity and the proposed Beta prior parameters that we expect to
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be appropriate for data sets similar as those used in this paper. Moreover, performing a sensitivity analysis
by modifying these values in the region(1/2, 2), and also restricting to an overall connectivity did not
affect the results significantly in our examples. However, we have found that when the number of genes
increases significantly with respect to the number of time points there might not be enough information
for using the parent-wise prior and we suggest using an overall/global connectivity model.

Our P-splines model can be extended and modified for specific purposes. First, we model only direct,
first-order filiation. One can extend the present model for allowing higher degree interactions, for exam-
ple, by using tensor product splines. The main hindrance would then be the combinatorial growth of the
topology space, and efficient methods for exploring it must be devised. Second, spline coefficient shrink-
age can be performed in a number of ways. Additional constraints can be used, including a further term
on the prior for the spline coefficients,N(βββ|0, ωH), with H derived from the first-order differences of
adjacent coefficients. This effectively penalizes large first-order differences and favors less jagged curves,
depending on the value ofω > 0. Additionally, the shape of the functional form the spline may take can
also be further restricted. For instance, many gene regulatory effects are monotonic. Extending the model
to include monotonicity restrictions is feasible by providing such information through a prior (Ansleyand
others, 1993). Finally, the splines model can be utilized to infer the functional form of the regulation, and
coupled with current biological knowledge, serve as a basis of a tailor-made parametric model.

SUPPLEMENTARY MATERIAL

Supplementary material is available athttp://biostatistics.oxfordjournals.org.
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