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SUMMARY

We have developed a method for estimating brain networks from fMRI datasets that have not all been
measured using the same set of brain regions. Some of the coarse scale regions have been split in smaller
subregions. The proposed penalized estimation procedure selects undirected graphical models with similar
structures that combine information from several subjects and several coarseness scales. Both within-scale
edges and between-scale edges that identify possible connections between a large region and its subregions
are estimated.
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1. INTRODUCTION

This work is motivated by the need to jointly estimate multiple undirected graphs from data that do not
all have the same measurement scale. The example used here originates from resting state functional
magnetic resonance imaging (rsfMRI) where brain activity measurements at voxel level were recorded
for two subjects. The rsfMRI images were segmented first in 68 atlas-based regions of interest (ROIs, i.e.,
sets of voxels that form nonoverlapping parts of the brain), corresponding to a coarse measurement scale
with anatomically large brain regions. Based on the procedure of Hagmann and others (2008), several of
the large ROIs were further split in two or more smaller regions, resulting in a finer scale with 114 ROIs.
For each subject, for all ROIs at each scale, n = 240 volumes of the blood oxygenation level dependent
(BOLD) signal have been obtained. The researcher has knowledge about which ROIs have been split, and
a similar functional behavior for a region and its subregions is expected. The setup bears some similarity
to the multiresolution framework of Choi and Willsky (2007) and Choi and others (2010). However, by
nature of the splitting process, the measurement for the coarse region cannot be algebraically reconstructed
from the measurements of its subregions.

The objectives are twofold. First, we wish to jointly estimate sparse undirected graphs that show
cerebral pathways between ROIs, where each ROI is associated with a node in the graph, using all the
available data at coarse and finer scales.Analyzing data available at only one scale would make the implicit
assumption that the chosen scale is in a sense “best”, and it has been shown that the definition of the ROIs
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794 E. PIRCALABELU AND OTHERS

has a high impact on the estimated graph (see, e.g., Zalesky and others, 2010; Schmittmann and others,
2015). Our procedure avoids such a selection. To overcome the differences in the dimensionality between
measurement scales, our procedure introduces two algebraic operators that make use of the knowledge
about which finer scale regions are subregions of a coarse scale region. Second, dependencies exist between
a coarse scale node and its corresponding finer scale nodes due to the experimental design. This we refer
to as “splits”. Our procedure is directed at estimating such splits. These splits are of interest because if
the subregions are all connected, then it seems reasonable to assume that these subregions act as one,
and so the region one scale up is good enough for modeling brain connectivity. In this sense, estimating
different scales simultaneously with our proposed method indicates a data-driven mixture of scales to use
for modeling connectivity.

The graphs are estimated by enforcing sparsity via �1-based penalization. For estimating undirected
graphs, see Yuan and Lin (2007), Banerjee and others (2008), Friedman and others (2008), Bickel and
Levina (2008a,b), Cai and others (2010), and Leng and Tang (2012) among others. See also Bühlmann
and Van De Geer (2011) and Hastie and others (2015) for regularization based on �1-penalties and
generalizations. Joint estimation of multiple sparse graphs has been studied by Guo and others (2011),
Danaher and others (2014), Gaskins and Daniels (2013), Zhao and others (2014), and Mohan and others
(2014). Fan and others (2016) give an overview.

We estimate graphs that show interactions between the regions both “within” (to reveal brain pathways
between ROIs) and “between” coarseness scales (to reveal dependencies between coarser and finer nodes).
The method can accommodate data from more than one subject, more than two measurement scales and
an unequal numbers of splits for different ROIs. Important for the method to work is the information on
which regions have been split, how many splits they have at each scale, and whether the measurements
for coarser ROIs are not deterministically obtained from the partitioned ones. We constrain the graphs for
the different scales to be “similar” to each other by using the “fused” or “group” graphical lasso penalties
as in Danaher and others (2014). The current setting is different in that first their method requires to have
the same measurement scale to combine graphs, and second we allow for connections between the split
and unsplit ROIs.

2. NOTATION

We associate each random variable with a node in an undirected graph G(E, V ), where V = {1, . . . , p}
represents the set of nodes and E is the set of undirected edges i − j between a pair of nodes (i, j). A
superscript denotes the measurement scale. Let X (k) be the random vector of variables that correspond
to the ROIs for scale k , with length q(k). When k = 1, X (1) collects all variables at the coarse scale. All
other scales are splits of the coarsest scale. We call scale k > 1 finer than scale 1, or conversely scale 1 is
coarser than scale k .

Define the vector X and its concentration matrix �, both partitioned according to the lengths q(k),
k = 1, . . . , K , where the submatrices �kk are the inverse covariance matrices corresponding to each of the
K coarseness scales, while the matrices �kk ′

with k �= k ′ are the across-scale inverse covariance matrices
between scales k and k ′. If an element θi,j �= 0, then an edge links nodes i and j in the graph G(E, V ), and
there is thus a one-to-one correspondence between � and G(E, V ),

X = (X (1)T, X (2)T, . . . , X (K)T)T ∼ N (0, �), �−1 ≡ � ≡
⎛
⎜⎝

�11 . . . �1K

...
. . .

...
�K1 . . . �KK

⎞
⎟⎠ .

We assume that � is invertible, and hence components at different scales cannot be algebraically related.
We estimate the matrices �kk in such a way that they are sparse and “similar” to each other, since they
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Mixed scale joint graphical lasso 795

Fig. 1. An illustrative example involving ROIs 4 and 28 at two coarseness scales. Region 28 is split, first in two, then
in three subregions, whereas region 4 is unsplit at both scales. Panel (a) shows edges at the coarse scale, (b) shows
edges at the fine scale, and (c) shows edges between coarse regions and finer subregions. Note that the shape and size
of the drawn regions do not correspond to the actual irregular shape of the anatomical regions in the data example.
This figure serves as an illustration of the splitting process only.

differ only in the measurement scale. The nonzero elements in �kk are interpreted as the “within” scale
edges. The non-zero elements in the off-diagonal matrices �kk ′

(k ′ �= k) are interpreted as the “between”
scale edges. The between scale graphs are constrained to be sparse as we only allow for the estimation of
edges corresponding to splits of the same regions across the scales, that is, coarse region i is only allowed
to connect to its subregions and not to subregions of another coarse region. Since we know exactly which
regions are split, the sparsity pattern of the off-diagonal matrices is partially known, while this is unknown
for the matrices on the diagonal. Figure 1 shows an example using ROIs 4 and 28 at two scales. At both
scales, ROI 4 is unsplit, whereas ROI 28 is split first in two and next in three subregions. The matrix �11

(within edges at the coarse scale) is represented in (a); (b) depicts �22. The between scale edges, or splits,
contained in �12 are in (c). The goal is to estimate all these edges.

Denote by k ∈ {1, . . . , K} the coarseness scale, by h ∈ {1, . . . , H } a coarse ROI, and by l ∈ {1, . . . , L}
a partition of a coarse ROI. The couple {k , h(l)} denotes partition l of region h at scale k . In Figure 1,
{2, 28(2)} refers to the second partition of ROI 28 at the second scale. There are K scales and H regions
at the coarsest scale. The number of partitions within a scale is denoted by Lk and can vary (e.g. at scale
k = 3, we can have more splits of the region h than at scale k = 2). The number of partitions can vary
for each region (e.g., h′ can have more splits than h). If a coarse ROI has not been split, the region is used
unchanged in the other scales.

The dimensions of each submatrix �kk are dictated by the number of splits encountered at scale k and
can all be different. To induce similarity between scales, we couple a region that is split into, say, three
regions at a finer scale to the original single region. This coupling requires that we have the same dimension
in both scales (three in this case). To tackle this dimensionality problem, we introduce in Section 5 the
“expand” operator, with the objective of transforming all submatrices to a common dimension that is most
informative.

The set W = {θ kk
i,j , k = 1, . . . , K ; i, j = 1, . . . , q(k)} contains all elements of the block matrices on the

main diagonal. If an element of W is nonzero, an undirected edge is present between different regions
within a scale. In the example of Figures 1(a) and (b), W corresponds to the parameters related to edges
using nodes from a fixed scale. Within a scale, a node may connect to all other nodes within the same scale.
Between scales, coarser nodes can connect only to their own finer partitions. The set B = {θ kk ′

i,j |k �= k ′, i
corresponds to h(l) and j corresponds to h(l′), ∀h and l, l′ = 1, . . . , Lk and k , k ′ = 1, . . . , K} contains
all entries of off-diagonal submatrices. In Figure 1(c), B corresponds to parameters related to edges
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796 E. PIRCALABELU AND OTHERS

between the partitions of an ROI across scales. This reflects interest in parameters that (if non-zero)
correspond to an undirected edge between different splits (l and l′) of a region (h) across different scales (k
and k ′).

3. ESTIMATION METHOD

Since the number of nodes at each measurement scale is not the same due to the splitting, the vector lengths
q(k), k = 1, . . . , K are also different. As a first step, we bring all components X (k) to the same length by
applying the “expand” operator. When a certain coarse region has been split in, say, three subregions in its
finest measurement scale, the expand operator repeats the measurement for that region three times. As a
result, all expanded vectors have the same length. The mathematical details about this operator are given
in Section 5.

Let Y = Ex(X , D) be the expanded vector based on the measurements X and the knowledge of the
region splits D. For a sample Y 1, . . . , Y n, denote by SEx the empirical variance matrix and let �Ex be the
true variance matrix of Y . We minimize the following objective function

q(�) =
{

trace(SEx�)− log det � +
∑
i �=j

pλn1,λn2(|ψ11
i,j |, . . . , |ψKK

i,j |)
}

, (3.1)

over symmetric positive definite matrices �, having the same dimension as �Ex and acting as a pseudo-
concentration matrix since �Ex is not invertible due to singularities induced by the expand operator, hence
�−1 �= �Ex. � contains “partial parameters” that are averaged by the reduce operator to obtain the
parameters of interest.

The penalty function pλn1,λn2 is a convex real valued function depending on two regularization val-
ues (λn1, λn2) that forces small entries to be shrunk to zero through λn1, while enforcing similarity
between subgraphs from different coarseness scales through λn2. For notational simplicity, we use
pλn1,λn2(|ψ11

i,j |, . . . , |ψKK
i,j |) to denote pλn1,λn2(|ψ11

i,j |, . . . , |ψ1K
i,j |, |ψ22

i,j |, . . . , |ψ2K
i,j |, . . . , |ψKK

i,j |). To ensure sim-
ilarity between the concentration submatrices �kk , we use a “fused” (FGL) or a “group” (GGL) graphical
lasso penalty as in Danaher and others (2014). For the fused lasso penalty, see Tibshirani and others
(2005), Höfling and others (2010), Liu and others (2010), and Yang and others (2015). The group lasso
penalty has been introduced by Yuan and Lin (2006) as a form of shrinkage that allows certain groups of
parameters to be jointly estimated as zero or nonzero values. The two penalties in our context take the
form,

pFGL
λn1,λn2

(|ψ11
i,j |, . . . , |ψKK

i,j |) = λn1

∑
k

∑
k ′

|ψ kk ′
i,j | + λn2

∑
k

∑
k ′>k

|ψ kk
i,j − ψ k ′k ′

i,j |,

pGGL
λn1,λn2

(|ψ11
i,j |, . . . , |ψKK

i,j |) = λn1

∑
k

∑
k ′

|ψ kk ′
i,j | + λn2

{∑
k

(ψ kk
i,j )

2

}1/2

,

where {ψ11
i,j , . . . ,ψKK

i,j } are the elements in the expanded matrix that correspond to the unexpanded elements
{θ 11

i,j , . . . , θKK
i,j } from the set W ∪B. If there is an ROI that has been split, the cardinality of {ψ11

i,j , . . . ,ψKK
i,j }

is larger than that of {θ 11
i,j , . . . , θKK

i,j }. For both penalties, the first term regularizes all allowed edges (both
within and between scales), while the second part, related to λn2, regularizes the similarity of the edges
between the scales. All entries of � for which the corresponding entries in � are not in W ∪B are defined
as 0 due to considering only the connections between ROIs and their split versions as enforced by the
design.
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Mixed scale joint graphical lasso 797

FGL penalizes the differences between matrix entries, thus making them more similar to each other,
while GGL encourages that nonzero entries of the concentration matrices occur at the same places. By
setting entries nonzero at the same positions across the coarseness scales, the group penalty also enforces
the within group matrices to be similar to each other. When the ordering of the scales is important,
the fused penalty is more appropriate. When the group formed by the coarse regions and all its splits
is of interest, the group penalty might be more appropriate. Both penalties encourage shared sparsity
patterns across the different scales, and as a consequence, the matrices or rather their graph representa-
tions are close together. They have both been applied, so far, only for cases with the same coarseness,
whereas we extend these ideas to different scales of coarseness. Using Danaher and others (2014), one
cannot simultaneously estimate several sparse graphs that allow between-coarseness scale edges. More-
over, their technique is constructed for the case where the number of regions for both scales is the
same, which for our problem is not the case, as we make a clear distinction between coarser and finer
regions.

By optimizing (3.1), we obtain an estimated matrix which has a larger dimension than desired. To
bring all estimated matrices back to their original dimensions, we apply the “reduce” operator on �̂ (see
Section 5 for details). Roughly, if a coarse scale region is expanded in three subregions, the estimates
for the three regions are combined in a (weighted) average, a single estimate, for the coarse scale region.
We define the resulting reduced matrix as the mixed scale joint graphical lasso (msJGL) estimate of the
concentration matrix, since it jointly estimates the between- and within-scale edges across all coarseness
scales.

4. ALGORITHM FOR THE MIXED SCALE JOINT GRAPHICAL LASSO

The proposed algorithm, based on the ADMM algorithm presented in Boyd and others (2011), allows one
part of the � matrix to be estimated using the FGL or GGL penalty, while the other part of the matrix is
estimated using a regular �1-penalty. All off-diagonal elements of � corresponding to the set B receive
only the �1-penalty, while all elements of the submatrices on the main diagonal of �, or equivalently the
elements in the set W , receive both the �1-penalty and either the group or fused penalty. The structural 0s in
the off-diagonal matrices are obtained by taking a large enough penalty such that all entries corresponding
to unallowed edges in G(E, V ) are set to zero. Let I and 0 be the identity and the null matrix of the
appropriate dimension. The algorithm is described as follows.

Step 1: Apply the “expand” operator to construct SEx and set �̂ = I , U = 0, Z = 0.

Step 2: Update �̂ = arg min�(trace(SEx�) − log det � + ρ

2 ||� − Z + U ||2F), where || · ||F is the
Frobenious norm. The solution is obtained in closed form. Compute the eigen decomposition
ρ(Z − U )− SEx = Q�QT, where ρ > 0 is a fixed scalar and form a diagonal matrix with
X̃ii = {eigi + (eig2

i + 4ρ)1/2}/(2ρ), where eigi is the i-th eigenvalue. Update �̂ = QX̃ QT.

Step 3: Split �̂, U , Z into block matrices according to the number of scales.

Step 4: Update the block submatrices Z kk with k = 1, . . . , K , for which the FGL or GGL penalty

is used, Z kk = arg minZkk
∑K

k=1
ρ

2 ||�̂kk − Z kk + U kk ||2F + ∑
i �=j pλn1,λn2(|z11

i,j |, . . . , |zKK
i,j |). The

Z kk can take different values for the FGL and GGL penalties, but in both cases this amounts
to applying the soft-thresholding operator on a linear combination of matrices.

Step 5: Update Z kk ′
with k �= k ′ for which the �1-penalty is used as Z kk ′ = Softλn1/ρ(�

kk ′ + U kk ′
),

where Softλn1/ρ is the soft-threshold operator using λn1/ρ as thresholding value.
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798 E. PIRCALABELU AND OTHERS

Step 6: Update U = �̂ + U − Z and repeat steps 2–6 until convergence.

Step 7: “Reduce” �̂ to obtain �̂Red, the msJGL estimated concentration matrix.

5. THE EXPAND AND REDUCE OPERATORS

We denote by a ◦ b the elementwise and by a ⊗ b the Kronecker product between the vectors a and b.
By 1q we denote a vector of length q with elements equal to 1. The vector s(k) records for each coarsest
region the number of splits at scale k . Let dh; h = {1, . . . , H } be the maximal number of edges that can be
set between splits of a region h from different measurement scales, hereby accounting for the hierarchical
structure by only counting edges between consecutive scales. Let X (k)

(h) be the subvector of splits of region

h for scale k . Further, let v(k)h = dh/#X (k)
(h), where the symbol # denotes the number of elements in the

vector.

DEFINITION 1 Let X = (X (1)T, X (2)T, . . . , X (K)T)T. Define a design vector D = s(1) ◦ s(2) ◦ . . . ◦
s(K) ≡ (d1, d2, . . . , dH )

T that records the product of the number of splits across all coarseness
scales. The expand operator produces the vector Ex(X , D) of length

∑H
h=1 dhK , which is defined as

Ex(X , D) = (
Ex(X (1), D), Ex(X (2), D), . . . , Ex(X (K), D)

)T
, where Ex(X (k), D) =

(
(X (k)

(1)⊗1
v(k)1
)T, (X (k)

(2)⊗
1

v(k)2
)T, . . . , (X (k)

(h) ⊗ 1
v(k)h
)T

)
, k = 1, . . . , K .

This operator ensures that all submatrices �kk ′
have the same dimension, which, in turn, allows to

enforce similarity between coarse and finer scales and to connect splits across scales.

DEFINITION 2 Let � be an expanded matrix and P a projection matrix of dimension
∑K

k=1

∑H
h=1 s(k)h ×∑H

h=1 dhK . The number of rows corresponds to the length of the unexpanded vector X , while the number
of columns corresponds to the length of the expanded vector Ex(X , D). Let �Red = Red(�) = P�PT be
the reduced matrix. P is constructed by placing 1/v(k)h on the row corresponding to the unexpanded region
h from scale k and all the columns for the expanded region.

Using 1/v(k)h in the matrix P assigns equal weights to all splits of a region. Weighted averages where
splits get different weights can be obtained by using other values. The matrix �Red has the same dimension
and structure as �. Only the entries that have been expanded in � are reduced, as all other entries remain
unchanged.

The reduce operator is not rank preserving but has the following properties: (i) �Red contains a 0
on position (i, j) if all entries in � pertaining to the couple (i, j) are also 0 and (ii) if � is symmetric
and full rank, then also �Red is a symmetric full rank matrix. Property (i) is similar to the “OR” rule of
Meinshausen and Bühlmann (2006). If the entries in the expanded matrix are nonzero and do not cancel
each other, then the reduced entry will also be nonzero. Property (ii) holds because the reduce operator
is equivalent to applying elementary operations on the rows and columns of �, which can be organized
such that �Red becomes the upper-left submatrix and the off-diagonal blocks are each other’s transpose.
Following Proposition 16.2 from Gallier (2011, pp. 435), if the matrix � is positive definite, also �Red is
positive definite, implying full rank. The symmetry of �Red follows that of �.

6. THEORETICAL PROPERTIES

Due to the eigenvalue decomposition of the expanded matrix, the complexity of the algorithm in Section 4
is of the order O

(
(
∑H

h=1 dhK)3
)
. Danaher and others (2014) and Witten and others (2011) investigated
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Mixed scale joint graphical lasso 799

improvements in computational speed when the concentration matrix is block diagonal. In this case, one
can apply within each scale the FGL, GGL, or graphical lasso (GL) on only a smaller subset of variables.
A similar argument cannot be made for the msJGL, due to the design of the problem: The off-diagonal
elements provide dependence information between larger and smaller partitions of the same anatomical
ROI.

The objective function (3.1) is closed, proper, and convex, and we assume that its Lagrangian has a
saddle point, then the ADMM algorithm is guaranteed to converge (Boyd and others, 2011).

Let Sn = {(i, j)|ψ kk ′ ,0
i,j �= 0; k , k ′ = 1, . . . , K}, where the true expanded matrix is �0 =

(ψ
kk ′ ,0
i,j ), and let sn = #Sn − pn denote the number of off-diagonal nonzero elements in Sn. Let

�0 ≡ (�0)−1 be the inverse of the pseudo-concentration matrix �0. We stress that �0 is not a
proper covariance matrix but a pseudo-covariance matrix. Assume that (a) there exist constants τ1

and τ2 such that 0 < τ1 < eigmin(�
0) < eigmax(�

0) < τ2 < ∞; (b) the sequences an =
maxi,j∈Snmaxk ,k ′=1,...,K

(|(∂pλn1,λn2(|ψ11,0
i,j |, . . . , |ψKK ,0

i,j |))/(∂|ψ kk ′
i,j |)|) = O

({(pn/sn+1 + 1)log pn/n}1/2
)

and

bn = maxi,j∈Snmaxk ,k ′ ,k",k ′′′=1,...,K

(|(∂2pλn1,λn2(|ψ11,0
i,j |, . . . , |ψKK ,0

i,j |))/(∂|ψ kk ′
i,j |∂|ψ k ′′k ′′′

i,j |)|) = o(1), and (c)
for any nonrandom matrices A, B for which the operator norm ‖A‖ = O(1), ‖B‖ = O(1), the quantity
maxi,j | (A(SEx − �0)B)i,j |= Op((log pn/n)1/2).

Condition (a) guarantees that the eigenvalues of �0 are well behaved. The sequence an in condition
(b) is connected to the bias of estimating nonzero entries and represents the maximal value over indices
(i, j) of any of the K components in the partial derivative vector. And condition (c) mimics the result of
Lemma 2 from Lam and Fan (2009) for the extended matrices.

PROPOSITION 1 Under conditions (a)–(c) if (i) n−1log pn = O(λ2
n1) and (ii) (pn + sn)n−1(log pn)

k = O(1)
for some k > 1, there exists a minimizer �̂ such that ||�̂ − �0||2F = O{(pn + sn)n−1log pn}.

PROPOSITION 2 Under conditions (a)–(c) and conditions of Proposition 1 for any local minimizer that
satisfies ||�̂ − �0||2F = OP{(pn + sn1)n−1log pn} and ||�̂ − �0||2 = OP(ηn) for a sequence ηn → 0,

if the sequence {√n−1log(pn) + √
ηn + λn2

θkk
i,j√∑K

k=1(θ
kk
i,j )

2
I (k = k ′)} = O(λn1) for the GGL penalty or if

{√n−1log(pn) + √
ηn + λn2

∑
k ′′>k sgn(θ kk

i,j − θ k ′′k ′′
i,j )I (k = k ′)} = O(λn1) for the FGL penalty, then with

probability tending to 1, ψ̂ kk ′
ij = 0 for all (i, j) ∈ Sc.

Proof. The proofs follow from Theorems 1 and 2 from Lam and Fan (2009) which follow the lines of
Rothman and others (2008) and Bickel and Levina (2008a,b). We show that (i) P(inf U∈A q(�0 + �U ) >

q(�0)) → 1 which implies that there exists a minimizer in the set
{
�0 + �U : ||�U ||2F ≤ C2

1α
2
n + C2

2β
2
n

}
such that ||�̂ − �0||2F = Op(αn + βn) and (ii) that the sign of ∂q(�)

∂ψkk′
ij

when i, j ∈ Sc, depends only on

sgn(ψ kk ′
ij ) which implies that ∀k , k ′ ψ̂ kk ′

ij = 0 with i, j ∈ Sc
n with probability tending to 1.

For (i) it can be shown that q(�)−q(�0) can be decomposed as I1+I2+I3, a sum which is asymptotically

positive. For (ii) we can show that
∣∣ ψkk

i,j√∑K
k=1(ψ

kk
i,j )

2

∣∣ ≤ 1 and
∣∣ ∑

k ′′; k ′′>k sgn(ψ kk
i,j −ψ k ′′k ′′

i,j )
∣∣ ≤ K − 1 (since it

is a finite sum, as K is fixed, of 1s or −1s). If ψ kk ′
i,j lies in a small neighborhood of 0 (excluding the value

0), as long as the conditions of Proposition 2 hold in the case of the GGL or FGL penalty, then the sign
of the derivative will depend on the sign of ψ kk ′

i,j only. This is because we can choose the λn1 sequence to
be large such that it dominates the remaining terms. This sparsistency rate implies that for entries that do
not get the GGL/FGL penalty, the rate is

√
n−1log(pn) + √

ηn, which is the same as for GL. For entries
that receive the GGL/FGL penalty, the rate is worse, due to the extra term associated with λn2. �
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7. SIMULATION STUDY

We have evaluated the performance of msJGL against the performance of GL on seven measures: (i)
TPR = (#estimated edges that are true edges)/(#true edges), this is the true positive rate, larger is better;
(ii) FPR = (#estimated edges that are NOT true edges)/(#edges that are NOT present in the true graph),
this is the false positive rate, smaller is better; (iii) FDR = (#estimated edges that are NOT true edges)/
(#estimated edges), this is the false discovery rate, smaller is better; (iv) SI = 1 −
(#estimated edges)/(#possible edges), this is the sparsity index; (v) SHD = #edge additions/deletions
such that estimated graph = true graph (structural Hamming distance, smaller is better); (vi)
F1 = 2PR/(P + R) where P = (#estimated edges that are true edges)/(#estimated edges); R =TPR
(F1 score, Jardine and van Rijsbergen, 1971, larger is better); and (vii) FL= ||�̂Red − �||F =√∑p

i=1

∑p
j=1 |θ̂ijRed − θij|2, where p represents the number of columns of the matrix � (Frobenius loss,

smaller is better).
Data corresponding to two different coarseness scales have been used for the simulation study. For

the second scale, a graph with 300 or 600 nodes was generated. For the first scale, a graph with 1/3rd
of this number of nodes was generated, where each node was obtained from concatenating the “finer”
nodes from the second scale. The number of regions that were combined to obtain a coarser region varied
randomly, meaning that some nodes were obtained by merging more regions than other nodes. Specifically,
we have first sampled with replacement 300 indices from the set {1, . . . , 100} or 600 indices from the set
{1, . . . , 200}, making sure that each integer from the set appeared at least once. The number of times an
index appeared is how many finer nodes are combined to obtain the coarser node. For both scales, the
graph structure generated was either “random”, “hub”, “cluster”, “banded” or “scale-free” (see Figure 2).

From the composed graph, we have defined a �−1 matrix as follows. The adjaceny matrix of the graph
(that contained only 0 or 1 values, where 1 on row i and column j denotes the presence of an edge between
nodes i and j) was multiplied with the value 3.9, and then an eigenvalue decomposition was performed.
The diagonal values of the matrix were replaced by the absolute value of the minimal eigenvalue, to
which the value 0.4 was added to ensure positive definiteness. With n either 100, 300, or 3000, data were
generated from a normal distribution of mean vector 0 and with � as covariance matrix. Note that as in
the real example from Section 8 both graphs are available for all the samples. The number of simulation
runs was set at 500. Both msJGL and GL use the ADMM algorithm in the optimization process.

Fig. 2. Simulated data. Schematic representation of concentration matrices corresponding to four graphs used in the
simulation study. For two scales, a random (a), hub (b), cluster (c), or scale-free (d) graph has been generated. Black
dots represent an edge between nodes or equivalently a nonzero element in the � matrix. In each graph, the “smaller”
bulk of points (top left) represents the graph for the first scale and the “larger” bulk of points (bottom right) represents
the graph for the second scale. The coarser regions of scale 1 have been split in finer regions on which the second
scale has been measured. The splits are denoted by the two “lines” above/below the diagonal.
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Fig. 3. Simulated data. The panels present the TP rate against FP rate, FD rate, Sparsity index (top row) and F1 score,
Hamming distance and Frobenius loss (bottom row) for msJGL and GL.

In the GL case, we estimate from the data two separate graphs (corresponding to each scale) using a
separate GL for each of them. Note that there is no involvement of the reduce/expand operators when using
GL and note too that the estimated graphs based on GL do not take into account any desire of obtaining
graphs that are similar to each other, nor do they account that some nodes in the larger graph are actually
obtained from splitting nodes in the coarser graph; as such GL is insensitive to dependencies induced by
splits.

Figure 3 presents the obtained results. Each symbol represents the average over all simulation runs
within one simulation setting, where a certain p, n, λn1, λn2 and penalty was used. For this study, both λn1

and λn2 take a value in the fixed set {0.001, 0.003, 0.007, 0.01, 0.05} and once a λn1 is selected, then it
is used for both msJGL and GL. For the FDR, SHD, and FL plots, a value above the diagonal indicates a
more favorable position of msJGL against GL. For the F1 and SI plots, a value below the diagonal indicates
a more favorable position of msJGL against GL.

The results indicate that generally the msJGL for a fixed FP rate provided larger TP rates. For ease of
exposition, Figure 3 (top left panel) shows the TPR and FPR performance for the case where the number
of nodes was 800 (200 coarse scale nodes and 600 finer scale nodes), the sample size was 300, and the
FGL penalty was used. For each of the 5 types of graphs, a curve is presented. A similar behavior was
observed for the other settings and when using the group penalty. In a large majority of cases, the SHD,
F1, and FDR measures were either comparable or better for msJGL. With respect to the Frobenius loss,
the results indicate that the performance is either comparable to that of the GL or slightly worse due to the
constraint of the similarity of submatrices, which forces entries in the concentration matrix to have similar
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802 E. PIRCALABELU AND OTHERS

values. In general, increasing the λn2 regularization parameter has as a direct effect a slight improvement
in the performance, increasing at the same time the sparsity of the msJGL graph as this increases the
regularization imposed on the estimated concentration matrix. While λn1 involves shrinking single entries
in the concentration matrix, λn2 influences groups of parameters.

8. rsfMRI EXAMPLE

For two subjects that were instructed to stay alert and focus on a white fixation cross, rsfMRI data were
acquired. The obtained images at scale 1 were segmented into 68 atlas-based ROIs, while for the second
scale 114 atlas-based ROIs have been used (Desikan and others, 2006). The 68 ROIs correspond to a
coarser scale of measurement, which implies that the brain regions under investigation were anatomically
larger. In the second step, some of the large regions were further split into several smaller regions, resulting
in a total of 114 ROIs for which the cerebral activity has been measured. For all ROIs, we obtained n = 240
volumes of the BOLD signal. See Schmittmann and others (2015) for more information regarding the
acquisition of the data.

We want to investigate (i) if there are links present in the estimated networks due to the splitting of
regions between scales that connect coarser regions with their smaller counterparts and (ii) which links
are present between regions within a given coarseness scale. To answer these questions, we have applied
the msJGL algorithm to the data from both subjects using the FGL and GGL penalties on a grid of
regularization parameters (λn1, λn2). The final regularization parameters have been selected to convey
sufficient information about brain pathways without having the graphs too cluttered nor having them too
sparse. A cross-validation scheme or an information criterion-based selection could also be used to select
an appropriate regularization value.

Figure 4 shows that both the FGL and GGL estimated between-scale edges (“split” dependencies) as
most of the entries are nonzero. This suggests that conditional independencies between the coarser and
finer scale splits are not supported by the data.

Figure 5 presents both the common and the unique edges pertaining to the estimated graphs for both
subjects at each scale (upper row) and the estimated splits across the scales (bottom row). The graphs
appear stable across subjects, which is seen by the percentage of common edges within scales (97.9% for

Fig. 4. fMRI data. Schematic representation of estimated concentration matrices with the fused (left panel) and
group (right panel) msJGL procedure using (λn1, λn2) = (.4, .1). The black dots represent an edge between nodes
or equivalently a nonzero element in the estimated concentration matrix. The square “bulks” of points denote the
within coarseness scale edges, while the “lines” above/below the diagonal denote the between scale edges. Each panel
represents two subjects with two scales (coarse and fine).
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Fig. 5. fMRI data. Fused msJGL within scale (top row) and between scale (bottom row) graphs. Both the coarse scale
(top left) and the fine scale (top right) are presented. Full line edges are common edges for both subjects, while dashed
and dot-dashed edges are estimated for one subject but not for the other. The values of the regularization parameters
are (λn1, λn2) = (.4, .1).

the coarse scale and 98.2% for the fine scale) and between scales (93.7%). Our method explicitly estimates
the splits and provides information on how the different scales are functionally related. Here we can see
that most differences between the subjects within and between scales are in the parietal and prefrontal
areas. This is in line with poorer reliability in these brain areas as found in Mueller and others (2015).

It is striking that the coarser regions do not connect with some of the finer subregions. The coarser
regions connect at most to one or two finer subregions, indicating that some of the coarser regions are
formed by grouping together several heterogeneous finer subregions. This would indicate that the function
of one or more subregions is different. This is likely to be found in rather arbitrary parcellations (Zalesky
and others, 2010). This is the case for ROIs 23, 29, and 30. The most extreme case is that of the coarse ROI
29, which for one subject connects to only one split, although the left and right hemispheres contained
each four splits, suggesting that this coarser region is a conglomerate of regions that exhibit different
cerebral activity. On the other hand, regions 8, 9, 10, 12, 13, 14, 16, 30, and 32 from the left hemisphere,
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804 E. PIRCALABELU AND OTHERS

as well as regions 7, 8, 9, 10, 12, 16, 31, and 32 from the right hemisphere seem to be homogeneous
regions, as links are present between the coarser regions and all of their finer splits.

The impact of using either a group or fused penalty can be important for the estimated structure and
sparsity of the networks, but there is an agreement with respect to which regions are deemed important.
Regions 10, 24, 25, 26, 28, 29, 31, and 32 are highly connected (see Figure 5) with the rest of the ROIs
for both scales and both penalties.

The analysis was performed on a standard laptop.As a test, we let the algorithm perform 1000 iterations,
which took around 2 minutes when applied to one subject and about 86 minutes for two subjects. In both
cases, two coarseness scales have been used.

9. DISCUSSION

We have developed a new method of jointly estimating graphs where the nodes come from mixed coarseness
scales. The approach is motivated by an fMRI dataset where the brain image has been “partitioned” in
various ROIs in an incremental manner. The cerebral activity has been measured first for 68 ROIs and
then for 114 ROIs, where the latter finer ROIs were created by splitting the coarser ROIs. Using the
proposed method, we were able to identify certain brain regions which exhibit either a homogeneous or
heterogeneous cerebral activity pattern. The method has direct applicability beyond fMRI data and in other
areas where data on different scales are observed and where the joint estimation of graphs that resemble
each other is desired.

Having multiple coarseness scales sets the identification of an optimal coarseness scale of the data
as an open problem, for which a scientist should perform the analysis. Different scales lead to some
qualitative differences in the conclusions, but one would hope that the decision on the scales is invariant.
Such questions related to the selection of an optimal coarseness scale are the subject of ongoing research.
The proposed method avoids selecting one such optimal scale and produces interpretable results at all
available scales.
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